{"title":"设计有效的随机试验:使用半参数有效估计量时的功率和样本量计算。","authors":"Alejandro Schuler","doi":"10.1515/ijb-2021-0039","DOIUrl":null,"url":null,"abstract":"<p><p>Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the \"design\" (and subsequent reanalysis) of a real randomized trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.</p>","PeriodicalId":49058,"journal":{"name":"International Journal of Biostatistics","volume":"18 1","pages":"151-171"},"PeriodicalIF":1.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Designing efficient randomized trials: power and sample size calculation when using semiparametric efficient estimators.\",\"authors\":\"Alejandro Schuler\",\"doi\":\"10.1515/ijb-2021-0039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the \\\"design\\\" (and subsequent reanalysis) of a real randomized trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.</p>\",\"PeriodicalId\":49058,\"journal\":{\"name\":\"International Journal of Biostatistics\",\"volume\":\"18 1\",\"pages\":\"151-171\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biostatistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2021-0039\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2021-0039","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Designing efficient randomized trials: power and sample size calculation when using semiparametric efficient estimators.
Trials enroll a large number of subjects in order to attain power, making them expensive and time-consuming. Sample size calculations are often performed with the assumption of an unadjusted analysis, even if the trial analysis plan specifies a more efficient estimator (e.g. ANCOVA). This leads to conservative estimates of required sample sizes and an opportunity for savings. Here we show that a relatively simple formula can be used to estimate the power of any two-arm, single-timepoint trial analyzed with a semiparametric efficient estimator, regardless of the domain of the outcome or kind of treatment effect (e.g. odds ratio, mean difference). Since an efficient estimator attains the minimum possible asymptotic variance, this allows for the design of trials that are as small as possible while still attaining design power and control of type I error. The required sample size calculation is parsimonious and requires the analyst to provide only a small number of population parameters. We verify in simulation that the large-sample properties of trials designed this way attain their nominal values. Lastly, we demonstrate how to use this formula in the "design" (and subsequent reanalysis) of a real randomized trial and show that fewer subjects are required to attain the same design power when a semiparametric efficient estimator is accounted for at the design stage.
期刊介绍:
The International Journal of Biostatistics (IJB) seeks to publish new biostatistical models and methods, new statistical theory, as well as original applications of statistical methods, for important practical problems arising from the biological, medical, public health, and agricultural sciences with an emphasis on semiparametric methods. Given many alternatives to publish exist within biostatistics, IJB offers a place to publish for research in biostatistics focusing on modern methods, often based on machine-learning and other data-adaptive methodologies, as well as providing a unique reading experience that compels the author to be explicit about the statistical inference problem addressed by the paper. IJB is intended that the journal cover the entire range of biostatistics, from theoretical advances to relevant and sensible translations of a practical problem into a statistical framework. Electronic publication also allows for data and software code to be appended, and opens the door for reproducible research allowing readers to easily replicate analyses described in a paper. Both original research and review articles will be warmly received, as will articles applying sound statistical methods to practical problems.