增强型 U-网络:用于息肉分割的特征增强网络

Krushi Patel, Andrés M Bur, Guanghui Wang
{"title":"增强型 U-网络:用于息肉分割的特征增强网络","authors":"Krushi Patel, Andrés M Bur, Guanghui Wang","doi":"10.1109/crv52889.2021.00032","DOIUrl":null,"url":null,"abstract":"<p><p>Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.</p>","PeriodicalId":93363,"journal":{"name":"Proceedings of the International Robots & Vision Conference. International Robots & Vision Conference","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341462/pdf/nihms-1721994.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation.\",\"authors\":\"Krushi Patel, Andrés M Bur, Guanghui Wang\",\"doi\":\"10.1109/crv52889.2021.00032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.</p>\",\"PeriodicalId\":93363,\"journal\":{\"name\":\"Proceedings of the International Robots & Vision Conference. International Robots & Vision Conference\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8341462/pdf/nihms-1721994.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Robots & Vision Conference. International Robots & Vision Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/crv52889.2021.00032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Robots & Vision Conference. International Robots & Vision Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/crv52889.2021.00032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/5 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

结肠镜检查是检测大肠息肉的一种方法,而大肠息肉是导致大肠癌的主要原因。然而,由于息肉的形状、大小、颜色和纹理各不相同,息肉与其背景之间存在穿梭差异,以及结肠镜图像的对比度较低,息肉分割是一项具有挑战性的任务。为了应对这些挑战,我们提出了一种用于准确分割结肠镜图像中息肉的特征增强网络。具体来说,该网络利用新颖的语义特征增强模块(SFEM)来增强语义信息。此外,我们没有直接将编码器特征添加到相应的解码器层,而是引入了自适应全局上下文模块(AGCM),该模块只关注编码器的重要和硬细粒度特征。这两个模块的集成逐层提高了特征的质量,从而增强了最终的特征表示。我们在五个结肠镜检查数据集上对所提出的方法进行了评估,结果表明与其他最先进的模型相比,该方法的性能更加优越。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Enhanced U-Net: A Feature Enhancement Network for Polyp Segmentation.

Colonoscopy is a procedure to detect colorectal polyps which are the primary cause for developing colorectal cancer. However, polyp segmentation is a challenging task due to the diverse shape, size, color, and texture of polyps, shuttle difference between polyp and its background, as well as low contrast of the colonoscopic images. To address these challenges, we propose a feature enhancement network for accurate polyp segmentation in colonoscopy images. Specifically, the proposed network enhances the semantic information using the novel Semantic Feature Enhance Module (SFEM). Furthermore, instead of directly adding encoder features to the respective decoder layer, we introduce an Adaptive Global Context Module (AGCM), which focuses only on the encoder's significant and hard fine-grained features. The integration of these two modules improves the quality of features layer by layer, which in turn enhances the final feature representation. The proposed approach is evaluated on five colonoscopy datasets and demonstrates superior performance compared to other state-of-the-art models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信