{"title":"不同月份收获的莲花根茎淀粉的理化性质","authors":"Yuji Honda, Tetsuya Yamazaki, Naoya Katsumi, Naoko Fujita, Kenji Matsumoto, Masanori Okazaki, Shoji Miwa","doi":"10.5458/jag.jag.JAG-2018_0010","DOIUrl":null,"url":null,"abstract":"<p><p>We investigated the physicochemical properties of starches extracted from 8 lotus (<i>Nelumbo nucifera</i> Gaertn.) rhizomes harvested in different months (September 2012 to May 2013). The physicochemical properties of the lotus starches depended on the harvest date. The peak viscosity (PV) in the Rapid Visco-Analyser analysis, and the viscosity at 65 °C (V<sub>65</sub>) in the rotational viscometer analysis were significantly lower in SEP starch (extracted from the September-harvested sample) than in the other lotus starches. The Spearman's rank correlation coefficients of potassium ion (K) content vs. V<sub>65</sub> and of K content vs. PV were 0.905 and 0.714, respectively, indicating that potassium ions are important for expressing the pasting properties of lotus starch. Principal component analysis suggested that the potassium, magnesium, calcium, and phosphorus contents are important for displaying both the pasting and gelatinization properties of the lotus starches. Meanwhile, the cluster analysis revealed that physicochemical properties of the SEP starch were different from those of the starches harvested in other months.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":"66 2","pages":"51-57"},"PeriodicalIF":1.2000,"publicationDate":"2019-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/23/c7/JAG-66-051.PMC8056931.pdf","citationCount":"0","resultStr":"{\"title\":\"Physicochemical Properties of Starches from Lotus Rhizomes Harvested in Different Months.\",\"authors\":\"Yuji Honda, Tetsuya Yamazaki, Naoya Katsumi, Naoko Fujita, Kenji Matsumoto, Masanori Okazaki, Shoji Miwa\",\"doi\":\"10.5458/jag.jag.JAG-2018_0010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We investigated the physicochemical properties of starches extracted from 8 lotus (<i>Nelumbo nucifera</i> Gaertn.) rhizomes harvested in different months (September 2012 to May 2013). The physicochemical properties of the lotus starches depended on the harvest date. The peak viscosity (PV) in the Rapid Visco-Analyser analysis, and the viscosity at 65 °C (V<sub>65</sub>) in the rotational viscometer analysis were significantly lower in SEP starch (extracted from the September-harvested sample) than in the other lotus starches. The Spearman's rank correlation coefficients of potassium ion (K) content vs. V<sub>65</sub> and of K content vs. PV were 0.905 and 0.714, respectively, indicating that potassium ions are important for expressing the pasting properties of lotus starch. Principal component analysis suggested that the potassium, magnesium, calcium, and phosphorus contents are important for displaying both the pasting and gelatinization properties of the lotus starches. Meanwhile, the cluster analysis revealed that physicochemical properties of the SEP starch were different from those of the starches harvested in other months.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":\"66 2\",\"pages\":\"51-57\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2019-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/23/c7/JAG-66-051.PMC8056931.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2018_0010\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2019/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2018_0010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2019/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Physicochemical Properties of Starches from Lotus Rhizomes Harvested in Different Months.
We investigated the physicochemical properties of starches extracted from 8 lotus (Nelumbo nucifera Gaertn.) rhizomes harvested in different months (September 2012 to May 2013). The physicochemical properties of the lotus starches depended on the harvest date. The peak viscosity (PV) in the Rapid Visco-Analyser analysis, and the viscosity at 65 °C (V65) in the rotational viscometer analysis were significantly lower in SEP starch (extracted from the September-harvested sample) than in the other lotus starches. The Spearman's rank correlation coefficients of potassium ion (K) content vs. V65 and of K content vs. PV were 0.905 and 0.714, respectively, indicating that potassium ions are important for expressing the pasting properties of lotus starch. Principal component analysis suggested that the potassium, magnesium, calcium, and phosphorus contents are important for displaying both the pasting and gelatinization properties of the lotus starches. Meanwhile, the cluster analysis revealed that physicochemical properties of the SEP starch were different from those of the starches harvested in other months.