{"title":"葡萄糖胺通过诱导自噬延长秀丽隐杆线虫的寿命。","authors":"Tomoya Shintani, Yuhei Kosuge, Hisashi Ashida","doi":"10.5458/jag.jag.JAG-2018_002","DOIUrl":null,"url":null,"abstract":"<p><p>Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode <i>Caenorhabditis elegans</i> by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (<i>p</i><0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes <i>daf-16</i> and <i>sir-2.1</i> but dependent on the autophagy-essential gene <i>atg-18</i>. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.</p>","PeriodicalId":14999,"journal":{"name":"Journal of applied glycoscience","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2018-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_002","citationCount":"17","resultStr":"{\"title\":\"Glucosamine Extends the Lifespan of <i>Caenorhabditis elegans</i> via Autophagy Induction.\",\"authors\":\"Tomoya Shintani, Yuhei Kosuge, Hisashi Ashida\",\"doi\":\"10.5458/jag.jag.JAG-2018_002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode <i>Caenorhabditis elegans</i> by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (<i>p</i><0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes <i>daf-16</i> and <i>sir-2.1</i> but dependent on the autophagy-essential gene <i>atg-18</i>. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.</p>\",\"PeriodicalId\":14999,\"journal\":{\"name\":\"Journal of applied glycoscience\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2018-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.5458/jag.jag.JAG-2018_002\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of applied glycoscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5458/jag.jag.JAG-2018_002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of applied glycoscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5458/jag.jag.JAG-2018_002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 17
摘要
葡萄糖胺(GlcN)通常被用作促进人类软骨健康的膳食补充剂。我们之前报道过GlcN可以诱导培养的哺乳动物细胞自噬。自噬被认为参与预防各种疾病和衰老。在这里,我们发现GlcN通过诱导自噬来延长秀丽隐杆线虫的寿命。GlcN诱导自噬通过lcg -1(哺乳动物LC3的同源物)的western blotting和荧光显微镜检测缝细胞中的自噬体点证实。寿命分析显示,至少5 mM的GlcN可以延长GlcN诱导的寿命。使用20 mM GlcN (pdaf-16和sir-2.1)可最大延长约30%的寿命,但依赖于自噬必需基因atg-18。因此,我们认为口服GlcN可以通过诱导自噬来延缓衰老过程。
Glucosamine Extends the Lifespan of Caenorhabditis elegans via Autophagy Induction.
Glucosamine (GlcN) is commonly used as a dietary supplement to promote cartilage health in humans. We previously reported that GlcN could induce autophagy in cultured mammalian cells. Autophagy is known to be involved in the prevention of various diseases and aging. Here, we showed that GlcN extended the lifespan of the nematode Caenorhabditis elegans by inducing autophagy. Autophagy induction by GlcN was demonstrated by western blotting for LGG-1 (an ortholog of mammalian LC3) and by detecting autophagosomal dots in seam cells by fluorescence microscopy. Lifespan assays revealed that GlcN-induced lifespan extension was achieved with at least 5 mM GlcN. A maximum lifespan extension of approximately 30 % was achieved with 20 mM GlcN (p<0.0001). GlcN-induced lifespan extension was not dependent on the longevity genes daf-16 and sir-2.1 but dependent on the autophagy-essential gene atg-18. Therefore, we suggest that oral administration of GlcN could help delay the aging process via autophagy induction.