Julien Garnon, L Meylheuc, J Jennings, G Koch, R Cazzato, B Bayle, A Gangi
{"title":"PMMA骨水泥在介入肿瘤学中的应用。","authors":"Julien Garnon, L Meylheuc, J Jennings, G Koch, R Cazzato, B Bayle, A Gangi","doi":"10.1615/CritRevBiomedEng.2021037591","DOIUrl":null,"url":null,"abstract":"<p><p>Polymethylmethacrylate (PMMA) bone cement is increasingly being used for percutaneous minimally invasive treatments of patients suffering from bone malignancies. PMMA is composed of a polymeric powder and a monomeric liquid. Once mixed, the polymerization process begins and leads to a viscous fluid that can be injected through a bone trocar. Cement progressively hardens within the bone, leading to a viscoelastic solid material. PMMA interacts with the surrounding cancellous bone through mechanical interlocking via interdigitations in trabecular bone. It can also bond with hardware, such as titanium screws, as it penetrates the macro- and micro-irregularities of the hardware. PMMA itself has no antineoplastic effects but may be used as a stand-alone treatment to provide pain palliation and bone consolidation through mechanical reinforcement, notably in areas with high compression load. It can also be used to reinforce the anchorage of screws in case of a landing zone with poor bone quality due to underlying malignant osteolysis.</p>","PeriodicalId":53679,"journal":{"name":"Critical Reviews in Biomedical Engineering","volume":"49 1","pages":"35-50"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"PMMA Bone Cement in Interventional Oncology.\",\"authors\":\"Julien Garnon, L Meylheuc, J Jennings, G Koch, R Cazzato, B Bayle, A Gangi\",\"doi\":\"10.1615/CritRevBiomedEng.2021037591\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Polymethylmethacrylate (PMMA) bone cement is increasingly being used for percutaneous minimally invasive treatments of patients suffering from bone malignancies. PMMA is composed of a polymeric powder and a monomeric liquid. Once mixed, the polymerization process begins and leads to a viscous fluid that can be injected through a bone trocar. Cement progressively hardens within the bone, leading to a viscoelastic solid material. PMMA interacts with the surrounding cancellous bone through mechanical interlocking via interdigitations in trabecular bone. It can also bond with hardware, such as titanium screws, as it penetrates the macro- and micro-irregularities of the hardware. PMMA itself has no antineoplastic effects but may be used as a stand-alone treatment to provide pain palliation and bone consolidation through mechanical reinforcement, notably in areas with high compression load. It can also be used to reinforce the anchorage of screws in case of a landing zone with poor bone quality due to underlying malignant osteolysis.</p>\",\"PeriodicalId\":53679,\"journal\":{\"name\":\"Critical Reviews in Biomedical Engineering\",\"volume\":\"49 1\",\"pages\":\"35-50\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Critical Reviews in Biomedical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1615/CritRevBiomedEng.2021037591\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Critical Reviews in Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/CritRevBiomedEng.2021037591","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Polymethylmethacrylate (PMMA) bone cement is increasingly being used for percutaneous minimally invasive treatments of patients suffering from bone malignancies. PMMA is composed of a polymeric powder and a monomeric liquid. Once mixed, the polymerization process begins and leads to a viscous fluid that can be injected through a bone trocar. Cement progressively hardens within the bone, leading to a viscoelastic solid material. PMMA interacts with the surrounding cancellous bone through mechanical interlocking via interdigitations in trabecular bone. It can also bond with hardware, such as titanium screws, as it penetrates the macro- and micro-irregularities of the hardware. PMMA itself has no antineoplastic effects but may be used as a stand-alone treatment to provide pain palliation and bone consolidation through mechanical reinforcement, notably in areas with high compression load. It can also be used to reinforce the anchorage of screws in case of a landing zone with poor bone quality due to underlying malignant osteolysis.
期刊介绍:
Biomedical engineering has been characterized as the application of concepts drawn from engineering, computing, communications, mathematics, and the physical sciences to scientific and applied problems in the field of medicine and biology. Concepts and methodologies in biomedical engineering extend throughout the medical and biological sciences. This journal attempts to critically review a wide range of research and applied activities in the field. More often than not, topics chosen for inclusion are concerned with research and practice issues of current interest. Experts writing each review bring together current knowledge and historical information that has led to the current state-of-the-art.