{"title":"检测膝关节摆动作为筛选,以确定运动员谁可能是在ACL损伤的高风险。","authors":"Akino Aoki, Satoshi Kubota, Kosuke Morinaga, Naiquan Nigel Zheng, Shangcheng Sam Wang, Kazuyoshi Gamada","doi":"10.1080/23335432.2021.1936175","DOIUrl":null,"url":null,"abstract":"<p><p>This study developed a method to detect knee wobbling (KW) at low knee flexion. KW consists of quick uncontrollable medio-lateral knee movements without knee flexion, which may indicate a risk of ACL injury. Ten female athletes were recorded while performing slow, single-leg squats. Using motion capture data, the ratio of the frontal angular velocity to sagittal angular velocity (F/S) was calculated. An 'F/S spike' was defined when the F/S ratio exceeded 100%. The number of F/S spikes was counted before and after low-pass filtering at different cut-off frequencies. Intraclass correlation coefficients for KW and filtered F/S spike were analysed. KWs per squat cycle showed a median (range) of 3 (2-8) times. F/S spikes before and after low-pass filtering at 3-, 6-, 10-, and 15-Hz were 51 (12-108), 2 (0-6), 3 (1-12), 5 (2-21), and 9 (3-33) times, respectively. KWs and F/S spikes on motion capture with 6-Hz, low-pass filtering were well correlated (<i>r</i> = 0 .76). Median percentages of valgus and varus F/S spikes were 71% and 29%, respectively. After 6Hz, low-pass filtering, the number of F/S spikes was strongly correlated with observed KWs. An F/S spike assessment may be used to objectively detect KW, including flexion and varus/valgus angular velocity.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":" ","pages":"30-41"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/51/4a/TBBE_8_1936175.PMC8330762.pdf","citationCount":"4","resultStr":"{\"title\":\"Detection of knee wobbling as a screen to identify athletes who may be at high risk for ACL injury.\",\"authors\":\"Akino Aoki, Satoshi Kubota, Kosuke Morinaga, Naiquan Nigel Zheng, Shangcheng Sam Wang, Kazuyoshi Gamada\",\"doi\":\"10.1080/23335432.2021.1936175\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study developed a method to detect knee wobbling (KW) at low knee flexion. KW consists of quick uncontrollable medio-lateral knee movements without knee flexion, which may indicate a risk of ACL injury. Ten female athletes were recorded while performing slow, single-leg squats. Using motion capture data, the ratio of the frontal angular velocity to sagittal angular velocity (F/S) was calculated. An 'F/S spike' was defined when the F/S ratio exceeded 100%. The number of F/S spikes was counted before and after low-pass filtering at different cut-off frequencies. Intraclass correlation coefficients for KW and filtered F/S spike were analysed. KWs per squat cycle showed a median (range) of 3 (2-8) times. F/S spikes before and after low-pass filtering at 3-, 6-, 10-, and 15-Hz were 51 (12-108), 2 (0-6), 3 (1-12), 5 (2-21), and 9 (3-33) times, respectively. KWs and F/S spikes on motion capture with 6-Hz, low-pass filtering were well correlated (<i>r</i> = 0 .76). Median percentages of valgus and varus F/S spikes were 71% and 29%, respectively. After 6Hz, low-pass filtering, the number of F/S spikes was strongly correlated with observed KWs. An F/S spike assessment may be used to objectively detect KW, including flexion and varus/valgus angular velocity.</p>\",\"PeriodicalId\":52124,\"journal\":{\"name\":\"International Biomechanics\",\"volume\":\" \",\"pages\":\"30-41\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/51/4a/TBBE_8_1936175.PMC8330762.pdf\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335432.2021.1936175\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2021.1936175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Detection of knee wobbling as a screen to identify athletes who may be at high risk for ACL injury.
This study developed a method to detect knee wobbling (KW) at low knee flexion. KW consists of quick uncontrollable medio-lateral knee movements without knee flexion, which may indicate a risk of ACL injury. Ten female athletes were recorded while performing slow, single-leg squats. Using motion capture data, the ratio of the frontal angular velocity to sagittal angular velocity (F/S) was calculated. An 'F/S spike' was defined when the F/S ratio exceeded 100%. The number of F/S spikes was counted before and after low-pass filtering at different cut-off frequencies. Intraclass correlation coefficients for KW and filtered F/S spike were analysed. KWs per squat cycle showed a median (range) of 3 (2-8) times. F/S spikes before and after low-pass filtering at 3-, 6-, 10-, and 15-Hz were 51 (12-108), 2 (0-6), 3 (1-12), 5 (2-21), and 9 (3-33) times, respectively. KWs and F/S spikes on motion capture with 6-Hz, low-pass filtering were well correlated (r = 0 .76). Median percentages of valgus and varus F/S spikes were 71% and 29%, respectively. After 6Hz, low-pass filtering, the number of F/S spikes was strongly correlated with observed KWs. An F/S spike assessment may be used to objectively detect KW, including flexion and varus/valgus angular velocity.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.