Everett Mettler, Timothy Burke, Christine M Massey, Philip J Kellman
{"title":"比较自适应和随机间隔时间表在学习中的掌握标准。","authors":"Everett Mettler, Timothy Burke, Christine M Massey, Philip J Kellman","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Adaptive generation of spacing intervals in learning using response times improves learning relative to both adaptive systems that do not use response times and fixed spacing schemes (Mettler, Massey & Kellman, 2016). Studies have often used limited presentations (e.g., 4) of each learning item. Does adaptive practice benefit learning if items are presented until attainment of objective mastery criteria? Does it matter if mastered items drop out of the active learning set? We compared adaptive and non-adaptive spacing under conditions of mastery and dropout. Experiment 1 compared random presentation order with no dropout to adaptive spacing and mastery using the ARTS (Adaptive Response-time-based Sequencing) system. Adaptive spacing produced better retention than random presentation. Experiment 2 showed clear learning advantages for adaptive spacing compared to random schedules that also included dropout. Adaptive spacing performs better than random schedules of practice, including when learning proceeds to mastery and items drop out when mastered.</p>","PeriodicalId":72634,"journal":{"name":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","volume":" ","pages":"773-779"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324179/pdf/nihms-1722428.pdf","citationCount":"0","resultStr":"{\"title\":\"Comparing Adaptive and Random Spacing Schedules during Learning to Mastery Criteria.\",\"authors\":\"Everett Mettler, Timothy Burke, Christine M Massey, Philip J Kellman\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Adaptive generation of spacing intervals in learning using response times improves learning relative to both adaptive systems that do not use response times and fixed spacing schemes (Mettler, Massey & Kellman, 2016). Studies have often used limited presentations (e.g., 4) of each learning item. Does adaptive practice benefit learning if items are presented until attainment of objective mastery criteria? Does it matter if mastered items drop out of the active learning set? We compared adaptive and non-adaptive spacing under conditions of mastery and dropout. Experiment 1 compared random presentation order with no dropout to adaptive spacing and mastery using the ARTS (Adaptive Response-time-based Sequencing) system. Adaptive spacing produced better retention than random presentation. Experiment 2 showed clear learning advantages for adaptive spacing compared to random schedules that also included dropout. Adaptive spacing performs better than random schedules of practice, including when learning proceeds to mastery and items drop out when mastered.</p>\",\"PeriodicalId\":72634,\"journal\":{\"name\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"volume\":\" \",\"pages\":\"773-779\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8324179/pdf/nihms-1722428.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"CogSci ... Annual Conference of the Cognitive Science Society. Cognitive Science Society (U.S.). Conference","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparing Adaptive and Random Spacing Schedules during Learning to Mastery Criteria.
Adaptive generation of spacing intervals in learning using response times improves learning relative to both adaptive systems that do not use response times and fixed spacing schemes (Mettler, Massey & Kellman, 2016). Studies have often used limited presentations (e.g., 4) of each learning item. Does adaptive practice benefit learning if items are presented until attainment of objective mastery criteria? Does it matter if mastered items drop out of the active learning set? We compared adaptive and non-adaptive spacing under conditions of mastery and dropout. Experiment 1 compared random presentation order with no dropout to adaptive spacing and mastery using the ARTS (Adaptive Response-time-based Sequencing) system. Adaptive spacing produced better retention than random presentation. Experiment 2 showed clear learning advantages for adaptive spacing compared to random schedules that also included dropout. Adaptive spacing performs better than random schedules of practice, including when learning proceeds to mastery and items drop out when mastered.