Y Yang, M D Sumption, M Rindfleisch, M Tomsic, E W Collings
{"title":"在添加了 Dy2O3 的 MgB2 线材中增强高温不可逆场和临界电流密度。","authors":"Y Yang, M D Sumption, M Rindfleisch, M Tomsic, E W Collings","doi":"10.1088/1361-6668/abc73c","DOIUrl":null,"url":null,"abstract":"<p><p>Bulk samples of magnesium diboride (MgB<sub>2</sub>) doped with 0.5 wt% of the rare earth oxides (REOs) Nd<sub>2</sub>O<sub>3</sub> and Dy<sub>2</sub>O<sub>3</sub> (named B-ND and B-DY) prepared by standard powder processing, and wires of MgB<sub>2</sub> doped with 0.5 wt% Dy<sub>2</sub>O<sub>3</sub> (named W-DY) prepared by a commercial powder-in-tube processing were studied. Investigations included x-ray diffractometry, scanning- and transmission electron microscopy, magnetic measurement of superconducting transition temperature (<i>T</i> <sub>c</sub>), magnetic and resistive measurements of upper critical field (<i>B</i> <sub>c2</sub>) and irreversibility field (<i>B</i> <sub>irr</sub>), as well as magnetic and transport measurements of critical current densities versus applied field (<i>J</i> <sub>cm</sub>(<i>B</i>) and <i>J</i> <sub>c</sub>(<i>B</i>), respectively). It was found that although the products of REO doping did not substitute into the MgB<sub>2</sub> lattice, REO-based inclusions resided within grains and at grain boundaries. Curves of bulk pinning force density (<i>F</i> <sub>p</sub>) versus reduced field (<i>b</i> = <i>B</i>/<i>B</i> <sub>irr</sub>) showed that flux pinning was by predominantly by grain boundaries, not point defects. At all temperatures the <i>F</i> <sub>p</sub>(<i>b</i>) of W-DY experienced enhancement by inclusion-induced grain boundary refinement but at higher temperatures <i>F</i> <sub>p</sub>(<i>b</i>) was still further increased by a Dy<sub>2</sub>O<sub>3</sub> additive-induced increase in <i>B</i> <sub>irr</sub> of about 1 T at all temperatures up to 20 K (and beyond). It is noted that Dy<sub>2</sub>O<sub>3</sub> increases <i>B</i> <sub>irr</sub> and that it does so, not just at 4 K, but in the higher temperature regime. This important property, shared by a number of REOs and other oxides promises to extend the applications range of MgB<sub>2</sub> conductors.</p>","PeriodicalId":54440,"journal":{"name":"Superconductor Science & Technology","volume":"34 2","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2021-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323853/pdf/nihms-1683517.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhanced higher temperature irreversibility field and critical current density in MgB<sub>2</sub> wires with Dy<sub>2</sub>O<sub>3</sub> additions.\",\"authors\":\"Y Yang, M D Sumption, M Rindfleisch, M Tomsic, E W Collings\",\"doi\":\"10.1088/1361-6668/abc73c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bulk samples of magnesium diboride (MgB<sub>2</sub>) doped with 0.5 wt% of the rare earth oxides (REOs) Nd<sub>2</sub>O<sub>3</sub> and Dy<sub>2</sub>O<sub>3</sub> (named B-ND and B-DY) prepared by standard powder processing, and wires of MgB<sub>2</sub> doped with 0.5 wt% Dy<sub>2</sub>O<sub>3</sub> (named W-DY) prepared by a commercial powder-in-tube processing were studied. Investigations included x-ray diffractometry, scanning- and transmission electron microscopy, magnetic measurement of superconducting transition temperature (<i>T</i> <sub>c</sub>), magnetic and resistive measurements of upper critical field (<i>B</i> <sub>c2</sub>) and irreversibility field (<i>B</i> <sub>irr</sub>), as well as magnetic and transport measurements of critical current densities versus applied field (<i>J</i> <sub>cm</sub>(<i>B</i>) and <i>J</i> <sub>c</sub>(<i>B</i>), respectively). It was found that although the products of REO doping did not substitute into the MgB<sub>2</sub> lattice, REO-based inclusions resided within grains and at grain boundaries. Curves of bulk pinning force density (<i>F</i> <sub>p</sub>) versus reduced field (<i>b</i> = <i>B</i>/<i>B</i> <sub>irr</sub>) showed that flux pinning was by predominantly by grain boundaries, not point defects. At all temperatures the <i>F</i> <sub>p</sub>(<i>b</i>) of W-DY experienced enhancement by inclusion-induced grain boundary refinement but at higher temperatures <i>F</i> <sub>p</sub>(<i>b</i>) was still further increased by a Dy<sub>2</sub>O<sub>3</sub> additive-induced increase in <i>B</i> <sub>irr</sub> of about 1 T at all temperatures up to 20 K (and beyond). It is noted that Dy<sub>2</sub>O<sub>3</sub> increases <i>B</i> <sub>irr</sub> and that it does so, not just at 4 K, but in the higher temperature regime. This important property, shared by a number of REOs and other oxides promises to extend the applications range of MgB<sub>2</sub> conductors.</p>\",\"PeriodicalId\":54440,\"journal\":{\"name\":\"Superconductor Science & Technology\",\"volume\":\"34 2\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2021-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8323853/pdf/nihms-1683517.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superconductor Science & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6668/abc73c\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/12 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superconductor Science & Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6668/abc73c","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/12 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Enhanced higher temperature irreversibility field and critical current density in MgB2 wires with Dy2O3 additions.
Bulk samples of magnesium diboride (MgB2) doped with 0.5 wt% of the rare earth oxides (REOs) Nd2O3 and Dy2O3 (named B-ND and B-DY) prepared by standard powder processing, and wires of MgB2 doped with 0.5 wt% Dy2O3 (named W-DY) prepared by a commercial powder-in-tube processing were studied. Investigations included x-ray diffractometry, scanning- and transmission electron microscopy, magnetic measurement of superconducting transition temperature (Tc), magnetic and resistive measurements of upper critical field (Bc2) and irreversibility field (Birr), as well as magnetic and transport measurements of critical current densities versus applied field (Jcm(B) and Jc(B), respectively). It was found that although the products of REO doping did not substitute into the MgB2 lattice, REO-based inclusions resided within grains and at grain boundaries. Curves of bulk pinning force density (Fp) versus reduced field (b = B/Birr) showed that flux pinning was by predominantly by grain boundaries, not point defects. At all temperatures the Fp(b) of W-DY experienced enhancement by inclusion-induced grain boundary refinement but at higher temperatures Fp(b) was still further increased by a Dy2O3 additive-induced increase in Birr of about 1 T at all temperatures up to 20 K (and beyond). It is noted that Dy2O3 increases Birr and that it does so, not just at 4 K, but in the higher temperature regime. This important property, shared by a number of REOs and other oxides promises to extend the applications range of MgB2 conductors.
期刊介绍:
Superconductor Science and Technology is a multidisciplinary journal for papers on all aspects of superconductivity. The coverage includes theories of superconductivity, the basic physics of superconductors, the relation of microstructure and growth to superconducting properties, the theory of novel devices, and the fabrication and properties of thin films and devices. It also encompasses the manufacture and properties of conductors, and their application in the construction of magnets and heavy current machines, together with enabling technology.