{"title":"机器人心内导管接触稳定性及接触安全性分析的概率方法。","authors":"Ran Hao, M Cenk Çavuşoğlu","doi":"10.1115/1.4050692","DOIUrl":null,"url":null,"abstract":"<p><p>The disturbances caused by the blood flow and tissue surface motions are major concerns during the motion planning of an intracardiac robotic catheter. Maintaining a stable and safe contact on the desired ablation point is essential for achieving effective lesions during the ablation procedure. In this paper, a probabilistic formulation of the contact stability and the contact safety for intravascular cardiac catheters under the blood flow and surface motion disturbances is presented. Probabilistic contact stability and contact safety metrics, employing a sample-based representation of the blood flow velocity distribution and the heart motion trajectory, are introduced. Finally, the contact stability and safety for an magnetic resonance imaging-actuated robotic catheter under main pulmonary artery blood flow disturbances and left ventricle surface motion disturbances are analyzed in simulation as example scenarios.</p>","PeriodicalId":516721,"journal":{"name":"Journal of Dynamic Systems, Measurement, and Control","volume":"143 9","pages":"094502"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299815/pdf/ds-20-1466_094502.pdf","citationCount":"0","resultStr":"{\"title\":\"A Probabilistic Approach for Contact Stability and Contact Safety Analysis of Robotic Intracardiac Catheter.\",\"authors\":\"Ran Hao, M Cenk Çavuşoğlu\",\"doi\":\"10.1115/1.4050692\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The disturbances caused by the blood flow and tissue surface motions are major concerns during the motion planning of an intracardiac robotic catheter. Maintaining a stable and safe contact on the desired ablation point is essential for achieving effective lesions during the ablation procedure. In this paper, a probabilistic formulation of the contact stability and the contact safety for intravascular cardiac catheters under the blood flow and surface motion disturbances is presented. Probabilistic contact stability and contact safety metrics, employing a sample-based representation of the blood flow velocity distribution and the heart motion trajectory, are introduced. Finally, the contact stability and safety for an magnetic resonance imaging-actuated robotic catheter under main pulmonary artery blood flow disturbances and left ventricle surface motion disturbances are analyzed in simulation as example scenarios.</p>\",\"PeriodicalId\":516721,\"journal\":{\"name\":\"Journal of Dynamic Systems, Measurement, and Control\",\"volume\":\"143 9\",\"pages\":\"094502\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8299815/pdf/ds-20-1466_094502.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dynamic Systems, Measurement, and Control\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4050692\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dynamic Systems, Measurement, and Control","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1115/1.4050692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/10 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
A Probabilistic Approach for Contact Stability and Contact Safety Analysis of Robotic Intracardiac Catheter.
The disturbances caused by the blood flow and tissue surface motions are major concerns during the motion planning of an intracardiac robotic catheter. Maintaining a stable and safe contact on the desired ablation point is essential for achieving effective lesions during the ablation procedure. In this paper, a probabilistic formulation of the contact stability and the contact safety for intravascular cardiac catheters under the blood flow and surface motion disturbances is presented. Probabilistic contact stability and contact safety metrics, employing a sample-based representation of the blood flow velocity distribution and the heart motion trajectory, are introduced. Finally, the contact stability and safety for an magnetic resonance imaging-actuated robotic catheter under main pulmonary artery blood flow disturbances and left ventricle surface motion disturbances are analyzed in simulation as example scenarios.