{"title":"通过果蝇觅食和秀丽隐杆线虫学习的研究,获得对行为遗传学的理解。","authors":"Aaron P Reiss, Catharine H Rankin","doi":"10.1080/01677063.2021.1928113","DOIUrl":null,"url":null,"abstract":"<p><p>The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of <i>foraging</i>, a gene responsible for the natural behavioral polymorphism of <i>Drosophila melanogaster</i> larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in <i>Caenorhabditis elegans</i> and then setting out to investigate the mechanisms underlying the \"simplest\" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.</p>","PeriodicalId":16491,"journal":{"name":"Journal of neurogenetics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01677063.2021.1928113","citationCount":"4","resultStr":"{\"title\":\"Gaining an understanding of behavioral genetics through studies of foraging in <i>Drosophila</i> and learning in <i>C. elegans</i>.\",\"authors\":\"Aaron P Reiss, Catharine H Rankin\",\"doi\":\"10.1080/01677063.2021.1928113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of <i>foraging</i>, a gene responsible for the natural behavioral polymorphism of <i>Drosophila melanogaster</i> larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in <i>Caenorhabditis elegans</i> and then setting out to investigate the mechanisms underlying the \\\"simplest\\\" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.</p>\",\"PeriodicalId\":16491,\"journal\":{\"name\":\"Journal of neurogenetics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01677063.2021.1928113\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurogenetics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01677063.2021.1928113\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/6/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurogenetics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01677063.2021.1928113","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/6/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Gaining an understanding of behavioral genetics through studies of foraging in Drosophila and learning in C. elegans.
The pursuit of understanding behavior has led to investigations of how genes, the environment, and the nervous system all work together to produce and influence behavior, giving rise to a field of research known as behavioral neurogenetics. This review focuses on the research journeys of two pioneers of aspects of behavioral neurogenetic research: Dr. Marla Sokolowski and Dr. Catharine Rankin as examples of how different approaches have been used to understand relationships between genes and behavior. Marla Sokolowski's research is centered around the discovery and analysis of foraging, a gene responsible for the natural behavioral polymorphism of Drosophila melanogaster larvae foraging behavior. Catharine Rankin's work began with demonstrating the ability to learn in Caenorhabditis elegans and then setting out to investigate the mechanisms underlying the "simplest" form of learning, habituation. Using these simple invertebrate organisms both investigators were able to perform in-depth dissections of behavior at genetic and molecular levels. By exploring their research and highlighting their findings we present ways their work has furthered our understanding of behavior and contributed to the field of behavioral neurogenetics.
期刊介绍:
The Journal is appropriate for papers on behavioral, biochemical, or cellular aspects of neural function, plasticity, aging or disease. In addition to analyses in the traditional genetic-model organisms, C. elegans, Drosophila, mouse and the zebrafish, the Journal encourages submission of neurogenetic investigations performed in organisms not easily amenable to experimental genetics. Such investigations might, for instance, describe behavioral differences deriving from genetic variation within a species, or report human disease studies that provide exceptional insights into biological mechanisms