F Riedel, J Golda, J Held, H L Davies, M W van der Woude, J Bredin, K Niemi, T Gans, V Schulz-von der Gathen, D O'Connell
{"title":"COST 参考微等离子体射流 \"的再现性。","authors":"F Riedel, J Golda, J Held, H L Davies, M W van der Woude, J Bredin, K Niemi, T Gans, V Schulz-von der Gathen, D O'Connell","doi":"10.1088/1361-6595/abad01","DOIUrl":null,"url":null,"abstract":"<p><p>Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.</p>","PeriodicalId":54599,"journal":{"name":"Plasma Sources Science & Technology","volume":"29 9","pages":"095018"},"PeriodicalIF":3.3000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208597/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reproducibility of 'COST reference microplasma jets'.\",\"authors\":\"F Riedel, J Golda, J Held, H L Davies, M W van der Woude, J Bredin, K Niemi, T Gans, V Schulz-von der Gathen, D O'Connell\",\"doi\":\"10.1088/1361-6595/abad01\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.</p>\",\"PeriodicalId\":54599,\"journal\":{\"name\":\"Plasma Sources Science & Technology\",\"volume\":\"29 9\",\"pages\":\"095018\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2020-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8208597/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Sources Science & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6595/abad01\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/9/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Sources Science & Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6595/abad01","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/9/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Reproducibility of 'COST reference microplasma jets'.
Atmospheric pressure plasmas have been ground-breaking for plasma science and technologies, due to their significant application potential in many fields, including medicinal, biological, and environmental applications. This is predominantly due to their efficient production and delivery of chemically reactive species under ambient conditions. One of the challenges in progressing the field is comparing plasma sources and results across the community and the literature. To address this a reference plasma source was established during the 'biomedical applications of atmospheric pressure plasmas' EU COST Action MP1101. It is crucial that reference sources are reproducible. Here, we present the reproducibility and variance across multiple sources through examining various characteristics, including: absolute atomic oxygen densities, absolute ozone densities, electrical characteristics, optical emission spectroscopy, temperature measurements, and bactericidal activity. The measurements demonstrate that the tested COST jets are mainly reproducible within the intrinsic uncertainty of each measurement technique.
期刊介绍:
Plasma Sources Science and Technology (PSST) reports on low-temperature plasmas and ionized gases operating over all ranges of gas pressure and plasma density, with varying degrees of ionization. The emphasis of PSST is on the fundamental science of these plasmas, their sources and the physical and chemical processes initiated or sustained by them, as elucidated through theoretical, computational or experimental techniques. PSST also reports on new experimentally or theoretically derived fundamental data (e.g. cross sections, transport coefficients) required for investigation of low temperature plasmas. Reports that relate to the technology and applications of these plasmas should be closely linked to the science and fundamental processes occurring in the plasma state.