{"title":"假设:果糖胺-3-激酶相关蛋白(FN3KRP)催化果糖胺直接下游的美拉德中间体的糖基化。","authors":"Benjamin Szwergold","doi":"10.1089/rej.2021.0009","DOIUrl":null,"url":null,"abstract":"<p><p>Non-enzymatic glycation (a.k.a. Maillard reaction) is a series of random spontaneous reactions between reducing sugars and amines, resulting in the formation of irreversible advanced glycation endproducts (AGE's). In food chemistry, this process is beneficial by contributing to the flavor, aroma, texture, and appearance of cooked foods. <i>In vivo</i>, however, Maillard reaction is deleterious because uncontrolled modification and crosslinking of biological macromolecules impairs their function. Consequently, chronic hyperglycemia of diabetes mellitus, for instance, leads to increased non-enzymatic glycation and diverse, multi-organ pathologies of diabetic complications. Based on the fact that toxic compounds, such as free radicals, are detoxified <i>in vivo</i> by specific defense mechanisms, one would expect to find mechanisms to control glucose toxicity as well. Thus far, only one such enzyme, fructosamine-3-kinase (FN3K), has been characterized. It operates intracellularly by catalyzing ATP-dependent removal of Maillard adducts, D-fructoselysines, from proteins, thereby reducing the Maillard reaction flux from glucose to AGE's. When FN3K was isolated, a closely related but distinct protein copurified with it. Unlike FN3K, however, this enzyme, fructosamine-3-kinase-related protein (FN3KRP), does not phosphorylate D-fructoselysines but it does phosphorylate several other (non-physiological) substrates. Interestingly, the distribution of FN3KRP in nature appears to be nearly universal whereas that of FN3K is limited to endotherms. In this article, it is suggested that the function of FN3KRP is deglycation of Maillard adducts downstream from fructoselysines. Such a mechanism, if proven correct, would be valuable given reports on apparent correlations between FN3KRP and some chronic conditions and/or diseases, such as a recent publication which proposes that the FN3KRP gene may be a longevity gene.</p>","PeriodicalId":20979,"journal":{"name":"Rejuvenation research","volume":"24 4","pages":"310-318"},"PeriodicalIF":2.2000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Hypothesis: Fructosamine-3-Kinase-Related-Protein (FN3KRP) Catalyzes Deglycation of Maillard Intermediates Directly Downstream from Fructosamines.\",\"authors\":\"Benjamin Szwergold\",\"doi\":\"10.1089/rej.2021.0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Non-enzymatic glycation (a.k.a. Maillard reaction) is a series of random spontaneous reactions between reducing sugars and amines, resulting in the formation of irreversible advanced glycation endproducts (AGE's). In food chemistry, this process is beneficial by contributing to the flavor, aroma, texture, and appearance of cooked foods. <i>In vivo</i>, however, Maillard reaction is deleterious because uncontrolled modification and crosslinking of biological macromolecules impairs their function. Consequently, chronic hyperglycemia of diabetes mellitus, for instance, leads to increased non-enzymatic glycation and diverse, multi-organ pathologies of diabetic complications. Based on the fact that toxic compounds, such as free radicals, are detoxified <i>in vivo</i> by specific defense mechanisms, one would expect to find mechanisms to control glucose toxicity as well. Thus far, only one such enzyme, fructosamine-3-kinase (FN3K), has been characterized. It operates intracellularly by catalyzing ATP-dependent removal of Maillard adducts, D-fructoselysines, from proteins, thereby reducing the Maillard reaction flux from glucose to AGE's. When FN3K was isolated, a closely related but distinct protein copurified with it. Unlike FN3K, however, this enzyme, fructosamine-3-kinase-related protein (FN3KRP), does not phosphorylate D-fructoselysines but it does phosphorylate several other (non-physiological) substrates. Interestingly, the distribution of FN3KRP in nature appears to be nearly universal whereas that of FN3K is limited to endotherms. In this article, it is suggested that the function of FN3KRP is deglycation of Maillard adducts downstream from fructoselysines. Such a mechanism, if proven correct, would be valuable given reports on apparent correlations between FN3KRP and some chronic conditions and/or diseases, such as a recent publication which proposes that the FN3KRP gene may be a longevity gene.</p>\",\"PeriodicalId\":20979,\"journal\":{\"name\":\"Rejuvenation research\",\"volume\":\"24 4\",\"pages\":\"310-318\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rejuvenation research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/rej.2021.0009\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GERIATRICS & GERONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rejuvenation research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/rej.2021.0009","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
A Hypothesis: Fructosamine-3-Kinase-Related-Protein (FN3KRP) Catalyzes Deglycation of Maillard Intermediates Directly Downstream from Fructosamines.
Non-enzymatic glycation (a.k.a. Maillard reaction) is a series of random spontaneous reactions between reducing sugars and amines, resulting in the formation of irreversible advanced glycation endproducts (AGE's). In food chemistry, this process is beneficial by contributing to the flavor, aroma, texture, and appearance of cooked foods. In vivo, however, Maillard reaction is deleterious because uncontrolled modification and crosslinking of biological macromolecules impairs their function. Consequently, chronic hyperglycemia of diabetes mellitus, for instance, leads to increased non-enzymatic glycation and diverse, multi-organ pathologies of diabetic complications. Based on the fact that toxic compounds, such as free radicals, are detoxified in vivo by specific defense mechanisms, one would expect to find mechanisms to control glucose toxicity as well. Thus far, only one such enzyme, fructosamine-3-kinase (FN3K), has been characterized. It operates intracellularly by catalyzing ATP-dependent removal of Maillard adducts, D-fructoselysines, from proteins, thereby reducing the Maillard reaction flux from glucose to AGE's. When FN3K was isolated, a closely related but distinct protein copurified with it. Unlike FN3K, however, this enzyme, fructosamine-3-kinase-related protein (FN3KRP), does not phosphorylate D-fructoselysines but it does phosphorylate several other (non-physiological) substrates. Interestingly, the distribution of FN3KRP in nature appears to be nearly universal whereas that of FN3K is limited to endotherms. In this article, it is suggested that the function of FN3KRP is deglycation of Maillard adducts downstream from fructoselysines. Such a mechanism, if proven correct, would be valuable given reports on apparent correlations between FN3KRP and some chronic conditions and/or diseases, such as a recent publication which proposes that the FN3KRP gene may be a longevity gene.
期刊介绍:
Rejuvenation Research publishes cutting-edge, peer-reviewed research on rejuvenation therapies in the laboratory and the clinic. The Journal focuses on key explorations and advances that may ultimately contribute to slowing or reversing the aging process, and covers topics such as cardiovascular aging, DNA damage and repair, cloning, and cell immortalization and senescence.
Rejuvenation Research coverage includes:
Cell immortalization and senescence
Pluripotent stem cells
DNA damage/repair
Gene targeting, gene therapy, and genomics
Growth factors and nutrient supply/sensing
Immunosenescence
Comparative biology of aging
Tissue engineering
Late-life pathologies (cardiovascular, neurodegenerative and others)
Public policy and social context.