流行病模拟的行为模型校准。

Meghendra Singh, Achla Marathe, Madhav V Marathe, Samarth Swarup
{"title":"流行病模拟的行为模型校准。","authors":"Meghendra Singh,&nbsp;Achla Marathe,&nbsp;Madhav V Marathe,&nbsp;Samarth Swarup","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.</p>","PeriodicalId":93357,"journal":{"name":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","volume":"2018 ","pages":"1640-1648"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300053/pdf/nihms-1639222.pdf","citationCount":"0","resultStr":"{\"title\":\"Behavior Model Calibration for Epidemic Simulations.\",\"authors\":\"Meghendra Singh,&nbsp;Achla Marathe,&nbsp;Madhav V Marathe,&nbsp;Samarth Swarup\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.</p>\",\"PeriodicalId\":93357,\"journal\":{\"name\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"volume\":\"2018 \",\"pages\":\"1640-1648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300053/pdf/nihms-1639222.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算流行病学家经常使用大规模的基于主体的人群模拟来研究疾病爆发和评估干预策略。在这类模拟中使用的代理很少能捕捉到人类在现实世界中的决策。缺乏真实的主体行为可能会破坏这种模拟产生的见解的可靠性,并可能使它们不适合为公共卫生政策提供信息。在本文中,我们通过开发一种方法来解决这个问题,该方法使用调查数据为大型多代理模拟创建和校准代理决策模型。我们的方法优化了与各种行为相关的成本向量,以匹配流感暴发期间人类行为的详细调查中观察到的行为分布。我们的方法是一种数据驱动的方法,将大规模流行病模拟中的药物决策纳入其中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Behavior Model Calibration for Epidemic Simulations.

Behavior Model Calibration for Epidemic Simulations.

Behavior Model Calibration for Epidemic Simulations.

Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信