Meghendra Singh, Achla Marathe, Madhav V Marathe, Samarth Swarup
{"title":"流行病模拟的行为模型校准。","authors":"Meghendra Singh, Achla Marathe, Madhav V Marathe, Samarth Swarup","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.</p>","PeriodicalId":93357,"journal":{"name":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","volume":"2018 ","pages":"1640-1648"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300053/pdf/nihms-1639222.pdf","citationCount":"0","resultStr":"{\"title\":\"Behavior Model Calibration for Epidemic Simulations.\",\"authors\":\"Meghendra Singh, Achla Marathe, Madhav V Marathe, Samarth Swarup\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.</p>\",\"PeriodicalId\":93357,\"journal\":{\"name\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"volume\":\"2018 \",\"pages\":\"1640-1648\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8300053/pdf/nihms-1639222.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... International Joint Conference on Autonomous Agents and Multiagent Systems : AAMAS. International Joint Conference on Autonomous Agents and Multiagent Systems","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/7/9 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Behavior Model Calibration for Epidemic Simulations.
Computational epidemiologists frequently employ large-scale agent-based simulations of human populations to study disease outbreaks and assess intervention strategies. The agents used in such simulations rarely capture the real-world decision-making of human beings. An absence of realistic agent behavior can undermine the reliability of insights generated by such simulations and might make them ill-suited for informing public health policies. In this paper, we address this problem by developing a methodology to create and calibrate an agent decision making model for a large multi-agent simulation, using survey data. Our method optimizes a cost vector associated with the various behaviors to match the behavior distributions observed in a detailed survey of human behaviors during influenza outbreaks. Our approach is a data-driven way of incorporating decision making for agents in large-scale epidemic simulations.