{"title":"适应家庭教育环境的人体生理学教学实验室。","authors":"Victor Ong, Stanley Yamashiro","doi":"10.1007/s43683-021-00055-y","DOIUrl":null,"url":null,"abstract":"<p><p>Teaching labs at the undergraduate level poses unique challenges to a school system forced online by COVID-19. We adapted physiology laboratories typically taught in-person to an online-only format, allowing students to measure personal health data alone. Students used available technology and low-cost devices for measuring respiratory and cardiovascular parameters and analyzed the data for differences in testing conditions such as posture and exertion. Students did not physically interact, which encouraged self-directed learning but disallowed peer-to-peer education. Pre-recorded data was utilized for ECG measurements, which streamlined the process but precluded the interactive act of experimentation. The use of low-cost devices empowered and encouraged students to take ownership of their health and form important connections between their own lives and theoretical physiology. Facilitating communication and TA preparedness is key to smoothly running the virtual lab. It will be important for future virtual labs to be designed to facilitate student interaction, include hands-on experimentation, and encourage personal investigation.</p>","PeriodicalId":72385,"journal":{"name":"Biomedical engineering education","volume":" ","pages":"91-97"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s43683-021-00055-y","citationCount":"1","resultStr":"{\"title\":\"Adapting a Human Physiology Teaching Laboratory to the At-Home Education Setting.\",\"authors\":\"Victor Ong, Stanley Yamashiro\",\"doi\":\"10.1007/s43683-021-00055-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Teaching labs at the undergraduate level poses unique challenges to a school system forced online by COVID-19. We adapted physiology laboratories typically taught in-person to an online-only format, allowing students to measure personal health data alone. Students used available technology and low-cost devices for measuring respiratory and cardiovascular parameters and analyzed the data for differences in testing conditions such as posture and exertion. Students did not physically interact, which encouraged self-directed learning but disallowed peer-to-peer education. Pre-recorded data was utilized for ECG measurements, which streamlined the process but precluded the interactive act of experimentation. The use of low-cost devices empowered and encouraged students to take ownership of their health and form important connections between their own lives and theoretical physiology. Facilitating communication and TA preparedness is key to smoothly running the virtual lab. It will be important for future virtual labs to be designed to facilitate student interaction, include hands-on experimentation, and encourage personal investigation.</p>\",\"PeriodicalId\":72385,\"journal\":{\"name\":\"Biomedical engineering education\",\"volume\":\" \",\"pages\":\"91-97\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s43683-021-00055-y\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical engineering education\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s43683-021-00055-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/21 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical engineering education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s43683-021-00055-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/21 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Adapting a Human Physiology Teaching Laboratory to the At-Home Education Setting.
Teaching labs at the undergraduate level poses unique challenges to a school system forced online by COVID-19. We adapted physiology laboratories typically taught in-person to an online-only format, allowing students to measure personal health data alone. Students used available technology and low-cost devices for measuring respiratory and cardiovascular parameters and analyzed the data for differences in testing conditions such as posture and exertion. Students did not physically interact, which encouraged self-directed learning but disallowed peer-to-peer education. Pre-recorded data was utilized for ECG measurements, which streamlined the process but precluded the interactive act of experimentation. The use of low-cost devices empowered and encouraged students to take ownership of their health and form important connections between their own lives and theoretical physiology. Facilitating communication and TA preparedness is key to smoothly running the virtual lab. It will be important for future virtual labs to be designed to facilitate student interaction, include hands-on experimentation, and encourage personal investigation.