找到你回来的路:比较路径里程计算法辅助返回。

Chia Hsuan Tsai, Peng Ren, Fatemeh Elyasi, Roberto Manduchi
{"title":"找到你回来的路:比较路径里程计算法辅助返回。","authors":"Chia Hsuan Tsai,&nbsp;Peng Ren,&nbsp;Fatemeh Elyasi,&nbsp;Roberto Manduchi","doi":"10.1109/PerComWorkshops51409.2021.9431082","DOIUrl":null,"url":null,"abstract":"<p><p>We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system.</p>","PeriodicalId":89224,"journal":{"name":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","volume":"2021 ","pages":"117-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/PerComWorkshops51409.2021.9431082","citationCount":"2","resultStr":"{\"title\":\"Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return.\",\"authors\":\"Chia Hsuan Tsai,&nbsp;Peng Ren,&nbsp;Fatemeh Elyasi,&nbsp;Roberto Manduchi\",\"doi\":\"10.1109/PerComWorkshops51409.2021.9431082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system.</p>\",\"PeriodicalId\":89224,\"journal\":{\"name\":\"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications\",\"volume\":\"2021 \",\"pages\":\"117-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/PerComWorkshops51409.2021.9431082\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PerComWorkshops51409.2021.9431082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... IEEE International Conference on Pervasive Computing and Communications. IEEE International Conference on Pervasive Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PerComWorkshops51409.2021.9431082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们提出了一种基于惯性的里程计算法的比较分析,用于辅助返回。辅助返回系统有助于回溯以前走过的路径,对盲人行人特别有用。我们提出了一种新的路径匹配算法,并使用WeAllWalk的数据在模拟辅助返回任务中进行了测试,WeAllWalk是目前唯一一个记录盲人惯性数据的数据集。我们考虑了两种里程计系统,一种基于深度学习(RoNIN),另一种基于鲁棒转弯检测和步长计数。结果表明,采用匝数/步长里程计系统可以获得最佳的路径匹配结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Your Way Back: Comparing Path Odometry Algorithms for Assisted Return.

We present a comparative analysis of inertial-based odometry algorithms for the purpose of assisted return. An assisted return system facilitates backtracking of a path previously taken, and can be particularly useful for blind pedestrians. We present a new algorithm for path matching, and test it in simulated assisted return tasks with data from WeAllWalk, the only existing data set with inertial data recorded from blind walkers. We consider two odometry systems, one based on deep learning (RoNIN), and the second based on robust turn detection and step counting. Our results show that the best path matching results are obtained using the turns/steps odometry system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信