Sirwan M.A. Al-Jaf , Sherko S. Niranji , Zana H. Mahmood
{"title":"快速、廉价的方法探索SARS CoV-2 D614G突变","authors":"Sirwan M.A. Al-Jaf , Sherko S. Niranji , Zana H. Mahmood","doi":"10.1016/j.mgene.2021.100950","DOIUrl":null,"url":null,"abstract":"<div><p>A common mutation has occurred in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), known as D614G (A23403G). There are discrepancies in the impact of this mutation on the virus's infectivity. Also, the whole genome sequencings are expensive and time-consuming. This study aims to develop three fast economical assays for prompt identifications of the D614G mutation including Taqman probe-based real-time reverse transcriptase polymerase chain reaction (rRT PCR), an amplification refractory mutation system (ARMS) RT and restriction fragment length polymorphism (RFLP), in nasopharyngeal swab samples. Both rRT and ARMS data showed G614 mutants indicated by the presence of HEX probe and 176 bp, respectively. Additionally, the results of the RFLP data and DNA sequencings confirmed the prevalence of the G614 mutants. These methods will be important, in epidemiological, reinfections and zoonotic aspects, through detecting the G614 mutant in retro-perspective samples to track its origins and future re-emergence of D614 wild type.</p></div>","PeriodicalId":38190,"journal":{"name":"Meta Gene","volume":"30 ","pages":"Article 100950"},"PeriodicalIF":0.8000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mgene.2021.100950","citationCount":"7","resultStr":"{\"title\":\"Rapid, inexpensive methods for exploring SARS CoV-2 D614G mutation\",\"authors\":\"Sirwan M.A. Al-Jaf , Sherko S. Niranji , Zana H. Mahmood\",\"doi\":\"10.1016/j.mgene.2021.100950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A common mutation has occurred in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), known as D614G (A23403G). There are discrepancies in the impact of this mutation on the virus's infectivity. Also, the whole genome sequencings are expensive and time-consuming. This study aims to develop three fast economical assays for prompt identifications of the D614G mutation including Taqman probe-based real-time reverse transcriptase polymerase chain reaction (rRT PCR), an amplification refractory mutation system (ARMS) RT and restriction fragment length polymorphism (RFLP), in nasopharyngeal swab samples. Both rRT and ARMS data showed G614 mutants indicated by the presence of HEX probe and 176 bp, respectively. Additionally, the results of the RFLP data and DNA sequencings confirmed the prevalence of the G614 mutants. These methods will be important, in epidemiological, reinfections and zoonotic aspects, through detecting the G614 mutant in retro-perspective samples to track its origins and future re-emergence of D614 wild type.</p></div>\",\"PeriodicalId\":38190,\"journal\":{\"name\":\"Meta Gene\",\"volume\":\"30 \",\"pages\":\"Article 100950\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mgene.2021.100950\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meta Gene\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214540021001018\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meta Gene","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214540021001018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
Rapid, inexpensive methods for exploring SARS CoV-2 D614G mutation
A common mutation has occurred in the spike protein of severe acute respiratory syndrome coronavirus 2 (SARS CoV-2), known as D614G (A23403G). There are discrepancies in the impact of this mutation on the virus's infectivity. Also, the whole genome sequencings are expensive and time-consuming. This study aims to develop three fast economical assays for prompt identifications of the D614G mutation including Taqman probe-based real-time reverse transcriptase polymerase chain reaction (rRT PCR), an amplification refractory mutation system (ARMS) RT and restriction fragment length polymorphism (RFLP), in nasopharyngeal swab samples. Both rRT and ARMS data showed G614 mutants indicated by the presence of HEX probe and 176 bp, respectively. Additionally, the results of the RFLP data and DNA sequencings confirmed the prevalence of the G614 mutants. These methods will be important, in epidemiological, reinfections and zoonotic aspects, through detecting the G614 mutant in retro-perspective samples to track its origins and future re-emergence of D614 wild type.
Meta GeneBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
1.10
自引率
0.00%
发文量
20
期刊介绍:
Meta Gene publishes meta-analysis, polymorphism and population study papers that are relevant to both human and non-human species. Examples include but are not limited to: (Relevant to human specimens): 1Meta-Analysis Papers - statistical reviews of the published literature of human genetic variation (typically linked to medical conditionals and/or congenital diseases) 2Genome Wide Association Studies (GWAS) - examination of large patient cohorts to identify common genetic factors that influence health and disease 3Human Genetics Papers - original studies describing new data on genetic variation in smaller patient populations 4Genetic Case Reports - short communications describing novel and in formative genetic mutations or chromosomal aberrations (e.g., probands) in very small demographic groups (e.g., family or unique ethnic group). (Relevant to non-human specimens): 1Small Genome Papers - Analysis of genetic variation in organelle genomes (e.g., mitochondrial DNA) 2Microbiota Papers - Analysis of microbiological variation through analysis of DNA sequencing in different biological environments 3Ecological Diversity Papers - Geographical distribution of genetic diversity of zoological or botanical species.