{"title":"1型糖尿病患者唾液蛋白下调,预防龋齿。","authors":"Eftychia Pappa, Konstantinos Vougas, Jerome Zoidakis, William Papaioannou, Christos Rahiotis, Heleni Vastardis","doi":"10.3390/proteomes9030033","DOIUrl":null,"url":null,"abstract":"<p><p>Saliva, an essential oral secretion involved in protecting the oral cavity's hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the salivary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva's diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unregulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family B member 2, protein S100-A7, mucin 5B, statherin, salivary proline-rich protein 2, and interleukin 36 gamma were significantly downregulated in poorly-controlled patients compared to healthy subjects. In addition, significant biological pathways (defense response to the bacterium, beta-defensin activity, proline-rich protein activity, oxygen binding, calcium binding, and glycosylation) were deregulated in this comparison, highlighting specific molecular characteristics in the cariogenic process. This analysis contributes to a better understanding of the mechanisms involved in caries vulnerability in adolescents with unregulated diabetes.</p>","PeriodicalId":20877,"journal":{"name":"Proteomes","volume":"9 3","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2021-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3390/proteomes9030033","citationCount":"8","resultStr":"{\"title\":\"Downregulation of Salivary Proteins, Protective against Dental Caries, in Type 1 Diabetes.\",\"authors\":\"Eftychia Pappa, Konstantinos Vougas, Jerome Zoidakis, William Papaioannou, Christos Rahiotis, Heleni Vastardis\",\"doi\":\"10.3390/proteomes9030033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Saliva, an essential oral secretion involved in protecting the oral cavity's hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the salivary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva's diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unregulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family B member 2, protein S100-A7, mucin 5B, statherin, salivary proline-rich protein 2, and interleukin 36 gamma were significantly downregulated in poorly-controlled patients compared to healthy subjects. In addition, significant biological pathways (defense response to the bacterium, beta-defensin activity, proline-rich protein activity, oxygen binding, calcium binding, and glycosylation) were deregulated in this comparison, highlighting specific molecular characteristics in the cariogenic process. This analysis contributes to a better understanding of the mechanisms involved in caries vulnerability in adolescents with unregulated diabetes.</p>\",\"PeriodicalId\":20877,\"journal\":{\"name\":\"Proteomes\",\"volume\":\"9 3\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2021-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3390/proteomes9030033\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/proteomes9030033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomes","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/proteomes9030033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Downregulation of Salivary Proteins, Protective against Dental Caries, in Type 1 Diabetes.
Saliva, an essential oral secretion involved in protecting the oral cavity's hard and soft tissues, is readily available and straightforward to collect. Recent studies have analyzed the salivary proteome in children and adolescents with extensive carious lesions to identify diagnostic and prognostic biomarkers. The current study aimed to investigate saliva's diagnostic ability through proteomics to detect the potential differential expression of proteins specific for the occurrence of carious lesions. For this study, we performed bioinformatics and functional analysis of proteomic datasets, previously examined by our group, from samples of adolescents with regulated and unregulated type 1 diabetes, as they compare with healthy controls. Among the differentially expressed proteins relevant to caries pathology, alpha-amylase 2B, beta-defensin 4A, BPI fold containing family B member 2, protein S100-A7, mucin 5B, statherin, salivary proline-rich protein 2, and interleukin 36 gamma were significantly downregulated in poorly-controlled patients compared to healthy subjects. In addition, significant biological pathways (defense response to the bacterium, beta-defensin activity, proline-rich protein activity, oxygen binding, calcium binding, and glycosylation) were deregulated in this comparison, highlighting specific molecular characteristics in the cariogenic process. This analysis contributes to a better understanding of the mechanisms involved in caries vulnerability in adolescents with unregulated diabetes.
ProteomesBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.50
自引率
3.00%
发文量
37
审稿时长
11 weeks
期刊介绍:
Proteomes (ISSN 2227-7382) is an open access, peer reviewed journal on all aspects of proteome science. Proteomes covers the multi-disciplinary topics of structural and functional biology, protein chemistry, cell biology, methodology used for protein analysis, including mass spectrometry, protein arrays, bioinformatics, HTS assays, etc. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the length of papers. Scope: -whole proteome analysis of any organism -disease/pharmaceutical studies -comparative proteomics -protein-ligand/protein interactions -structure/functional proteomics -gene expression -methodology -bioinformatics -applications of proteomics