{"title":"上肢运动过程中α和低β带功能网络的改变与慢性卒中运动障碍的关系。","authors":"Miseon Shim, Ga-Young Choi, Nam-Jong Paik, Chaiyoung Lim, Han-Jeong Hwang, Won-Seok Kim","doi":"10.1089/brain.2021.0070","DOIUrl":null,"url":null,"abstract":"<p><p><b><i>Background:</i></b> Impaired movement after stroke is closely associated with altered brain functions, and thus the investigation on neural substrates of patients with stroke can pave a way for not only understanding the underlying mechanisms of neuropathological traits, but also providing an innovative solution for stroke rehabilitation. The objective of this study was to precisely investigate altered brain functions in terms of power spectral and brain network analyses. <b><i>Methods:</i></b> Altered brain function was investigated by using electroencephalography (EEG) measured while 34 patients with chronic stroke performed movement tasks with the affected and unaffected hands. The relationships between functional brain network indices and Fugl-Meyer Assessment (FMA) scores were also investigated. <b><i>Results:</i></b> A stronger low-beta event-related desynchronization was found in the contralesional hemisphere for both affected and unaffected movement tasks compared with that of the ipsilesional hemisphere. More efficient whole-brain networks (increased strength and clustering coefficient, and prolonged path length) in the low-beta frequency band were revealed when moving the unaffected hand compared with when moving the affected hand. In addition, the brain network indices of the contralesional hemisphere indicated higher efficiency and cost-effectiveness than those of the ipsilesional hemisphere in both the alpha and low-beta frequency bands. Moreover, the alpha network indices (strength, clustering coefficient, path length, and small-worldness) were significantly correlated with the FMA scores. <b><i>Conclusions:</i></b> Efficient functional brain network indices are associated with better motor outcomes in patients with stroke and could be useful biomarkers to monitor stroke recovery during rehabilitation.</p>","PeriodicalId":9155,"journal":{"name":"Brain connectivity","volume":" ","pages":"487-497"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Altered Functional Networks of Alpha and Low-Beta Bands During Upper Limb Movement and Association with Motor Impairment in Chronic Stroke.\",\"authors\":\"Miseon Shim, Ga-Young Choi, Nam-Jong Paik, Chaiyoung Lim, Han-Jeong Hwang, Won-Seok Kim\",\"doi\":\"10.1089/brain.2021.0070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><b><i>Background:</i></b> Impaired movement after stroke is closely associated with altered brain functions, and thus the investigation on neural substrates of patients with stroke can pave a way for not only understanding the underlying mechanisms of neuropathological traits, but also providing an innovative solution for stroke rehabilitation. The objective of this study was to precisely investigate altered brain functions in terms of power spectral and brain network analyses. <b><i>Methods:</i></b> Altered brain function was investigated by using electroencephalography (EEG) measured while 34 patients with chronic stroke performed movement tasks with the affected and unaffected hands. The relationships between functional brain network indices and Fugl-Meyer Assessment (FMA) scores were also investigated. <b><i>Results:</i></b> A stronger low-beta event-related desynchronization was found in the contralesional hemisphere for both affected and unaffected movement tasks compared with that of the ipsilesional hemisphere. More efficient whole-brain networks (increased strength and clustering coefficient, and prolonged path length) in the low-beta frequency band were revealed when moving the unaffected hand compared with when moving the affected hand. In addition, the brain network indices of the contralesional hemisphere indicated higher efficiency and cost-effectiveness than those of the ipsilesional hemisphere in both the alpha and low-beta frequency bands. Moreover, the alpha network indices (strength, clustering coefficient, path length, and small-worldness) were significantly correlated with the FMA scores. <b><i>Conclusions:</i></b> Efficient functional brain network indices are associated with better motor outcomes in patients with stroke and could be useful biomarkers to monitor stroke recovery during rehabilitation.</p>\",\"PeriodicalId\":9155,\"journal\":{\"name\":\"Brain connectivity\",\"volume\":\" \",\"pages\":\"487-497\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain connectivity\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/brain.2021.0070\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/9/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain connectivity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/brain.2021.0070","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/9/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
Altered Functional Networks of Alpha and Low-Beta Bands During Upper Limb Movement and Association with Motor Impairment in Chronic Stroke.
Background: Impaired movement after stroke is closely associated with altered brain functions, and thus the investigation on neural substrates of patients with stroke can pave a way for not only understanding the underlying mechanisms of neuropathological traits, but also providing an innovative solution for stroke rehabilitation. The objective of this study was to precisely investigate altered brain functions in terms of power spectral and brain network analyses. Methods: Altered brain function was investigated by using electroencephalography (EEG) measured while 34 patients with chronic stroke performed movement tasks with the affected and unaffected hands. The relationships between functional brain network indices and Fugl-Meyer Assessment (FMA) scores were also investigated. Results: A stronger low-beta event-related desynchronization was found in the contralesional hemisphere for both affected and unaffected movement tasks compared with that of the ipsilesional hemisphere. More efficient whole-brain networks (increased strength and clustering coefficient, and prolonged path length) in the low-beta frequency band were revealed when moving the unaffected hand compared with when moving the affected hand. In addition, the brain network indices of the contralesional hemisphere indicated higher efficiency and cost-effectiveness than those of the ipsilesional hemisphere in both the alpha and low-beta frequency bands. Moreover, the alpha network indices (strength, clustering coefficient, path length, and small-worldness) were significantly correlated with the FMA scores. Conclusions: Efficient functional brain network indices are associated with better motor outcomes in patients with stroke and could be useful biomarkers to monitor stroke recovery during rehabilitation.
期刊介绍:
Brain Connectivity provides groundbreaking findings in the rapidly advancing field of connectivity research at the systems and network levels. The Journal disseminates information on brain mapping, modeling, novel research techniques, new imaging modalities, preclinical animal studies, and the translation of research discoveries from the laboratory to the clinic.
This essential journal fosters the application of basic biological discoveries and contributes to the development of novel diagnostic and therapeutic interventions to recognize and treat a broad range of neurodegenerative and psychiatric disorders such as: Alzheimer’s disease, attention-deficit hyperactivity disorder, posttraumatic stress disorder, epilepsy, traumatic brain injury, stroke, dementia, and depression.