{"title":"帝国主义竞争算法在卵巢癌预测质谱数据中的生物标志物发现。","authors":"Shiva Pirhadi, Keivan Maghooli, Niloofar Yousefi Moteghaed, Masoud Garshasbi, Seyed Jalaleddin Mousavirad","doi":"10.4103/jmss.JMSS_20_20","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates.</p><p><strong>Methods: </strong>Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data.</p><p><strong>Results: </strong>The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns.</p><p><strong>Conclusion: </strong>Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.</p>","PeriodicalId":37680,"journal":{"name":"Journal of Medical Signals & Sensors","volume":"11 2","pages":"108-119"},"PeriodicalIF":1.1000,"publicationDate":"2021-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/bc/JMSS-11-108.PMC8253319.pdf","citationCount":"0","resultStr":"{\"title\":\"Biomarker Discovery by Imperialist Competitive Algorithm in Mass Spectrometry Data for Ovarian Cancer Prediction.\",\"authors\":\"Shiva Pirhadi, Keivan Maghooli, Niloofar Yousefi Moteghaed, Masoud Garshasbi, Seyed Jalaleddin Mousavirad\",\"doi\":\"10.4103/jmss.JMSS_20_20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates.</p><p><strong>Methods: </strong>Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data.</p><p><strong>Results: </strong>The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns.</p><p><strong>Conclusion: </strong>Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.</p>\",\"PeriodicalId\":37680,\"journal\":{\"name\":\"Journal of Medical Signals & Sensors\",\"volume\":\"11 2\",\"pages\":\"108-119\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-05-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a2/bc/JMSS-11-108.PMC8253319.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Signals & Sensors\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/jmss.JMSS_20_20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Signals & Sensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/jmss.JMSS_20_20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/1 0:00:00","PubModel":"eCollection","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Biomarker Discovery by Imperialist Competitive Algorithm in Mass Spectrometry Data for Ovarian Cancer Prediction.
Background: Mass spectrometry is a method for identifying proteins and could be used for distinguishing between proteins in healthy and nonhealthy samples. This study was conducted using mass spectrometry data of ovarian cancer with high resolution. Usually, diagnostic and monitoring tests are done according to sensitivity and specificity rates; thus, the aim of this study is to compare mass spectrometry of healthy and cancerous samples in order to find a set of biomarkers or indicators with a reasonable sensitivity and specificity rates.
Methods: Therefore, combination methods were used for choosing the optimum feature set as t-test, entropy, Bhattacharya, and an imperialist competitive algorithm with K-nearest neighbors classifier. The resulting feature from each method was feed to the C5 decision tree with 10-fold cross-validation to classify data.
Results: The most important variables using this method were identified and a set of rules were extracted. Similar to most frequent features, repetitive patterns were not obtained; the generalized rule induction method was used to identify the repetitive patterns.
Conclusion: Finally, the resulting features were introduced as biomarkers and compared with other studies. It was found that the resulting features were very similar to other studies. In the case of the classifier, higher sensitivity and specificity rates with a lower number of features were achieved when compared with other studies.
期刊介绍:
JMSS is an interdisciplinary journal that incorporates all aspects of the biomedical engineering including bioelectrics, bioinformatics, medical physics, health technology assessment, etc. Subject areas covered by the journal include: - Bioelectric: Bioinstruments Biosensors Modeling Biomedical signal processing Medical image analysis and processing Medical imaging devices Control of biological systems Neuromuscular systems Cognitive sciences Telemedicine Robotic Medical ultrasonography Bioelectromagnetics Electrophysiology Cell tracking - Bioinformatics and medical informatics: Analysis of biological data Data mining Stochastic modeling Computational genomics Artificial intelligence & fuzzy Applications Medical softwares Bioalgorithms Electronic health - Biophysics and medical physics: Computed tomography Radiation therapy Laser therapy - Education in biomedical engineering - Health technology assessment - Standard in biomedical engineering.