{"title":"联邦在职人员在CBRS波段保护的确定性移动列表","authors":"Thao T. Nguyen;Michael R. Souryal","doi":"10.1109/TCCN.2020.3030643","DOIUrl":null,"url":null,"abstract":"The 3.5 GHz citizens broadband radio service (CBRS) band in the U.S. is a key portion of mid-band spectrum shared between commercial operators and existing federal and non-federal incumbents. To protect the federal incumbents from harmful interference, a spectrum access system (SAS) is required to use a common, standardized algorithm, called the move list algorithm, to suspend transmissions of some CBRS devices (CBSDs) on channels in which the incumbent becomes active. However, the current reference move list implementation used for SAS testing is non-deterministic in that it uses a Monte Carlo estimate of the \n<inline-formula> <tex-math>$95^{\\mathrm {th}}$ </tex-math></inline-formula>\n percentile of the aggregate interference from CBSDs to the incumbent. This leads to uncertainty in move list results and in the aggregate interference check of the test. This article uses upper and lower bounds on the aggregate interference distribution to compute deterministic move lists. These include the reference move list used by the testing system and an operational move list used by the SAS itself. We evaluate the performance of the proposed deterministic move lists using reference implementations of the standards and simulated CBSD deployments in the vicinity of federal incumbent dynamic protection areas.","PeriodicalId":13069,"journal":{"name":"IEEE Transactions on Cognitive Communications and Networking","volume":"7 3","pages":"790-801"},"PeriodicalIF":7.4000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/TCCN.2020.3030643","citationCount":"2","resultStr":"{\"title\":\"Deterministic Move Lists for Federal Incumbent Protection in the CBRS Band\",\"authors\":\"Thao T. Nguyen;Michael R. Souryal\",\"doi\":\"10.1109/TCCN.2020.3030643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The 3.5 GHz citizens broadband radio service (CBRS) band in the U.S. is a key portion of mid-band spectrum shared between commercial operators and existing federal and non-federal incumbents. To protect the federal incumbents from harmful interference, a spectrum access system (SAS) is required to use a common, standardized algorithm, called the move list algorithm, to suspend transmissions of some CBRS devices (CBSDs) on channels in which the incumbent becomes active. However, the current reference move list implementation used for SAS testing is non-deterministic in that it uses a Monte Carlo estimate of the \\n<inline-formula> <tex-math>$95^{\\\\mathrm {th}}$ </tex-math></inline-formula>\\n percentile of the aggregate interference from CBSDs to the incumbent. This leads to uncertainty in move list results and in the aggregate interference check of the test. This article uses upper and lower bounds on the aggregate interference distribution to compute deterministic move lists. These include the reference move list used by the testing system and an operational move list used by the SAS itself. We evaluate the performance of the proposed deterministic move lists using reference implementations of the standards and simulated CBSD deployments in the vicinity of federal incumbent dynamic protection areas.\",\"PeriodicalId\":13069,\"journal\":{\"name\":\"IEEE Transactions on Cognitive Communications and Networking\",\"volume\":\"7 3\",\"pages\":\"790-801\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/TCCN.2020.3030643\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/9222354/\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TELECOMMUNICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/9222354/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TELECOMMUNICATIONS","Score":null,"Total":0}
Deterministic Move Lists for Federal Incumbent Protection in the CBRS Band
The 3.5 GHz citizens broadband radio service (CBRS) band in the U.S. is a key portion of mid-band spectrum shared between commercial operators and existing federal and non-federal incumbents. To protect the federal incumbents from harmful interference, a spectrum access system (SAS) is required to use a common, standardized algorithm, called the move list algorithm, to suspend transmissions of some CBRS devices (CBSDs) on channels in which the incumbent becomes active. However, the current reference move list implementation used for SAS testing is non-deterministic in that it uses a Monte Carlo estimate of the
$95^{\mathrm {th}}$
percentile of the aggregate interference from CBSDs to the incumbent. This leads to uncertainty in move list results and in the aggregate interference check of the test. This article uses upper and lower bounds on the aggregate interference distribution to compute deterministic move lists. These include the reference move list used by the testing system and an operational move list used by the SAS itself. We evaluate the performance of the proposed deterministic move lists using reference implementations of the standards and simulated CBSD deployments in the vicinity of federal incumbent dynamic protection areas.
期刊介绍:
The IEEE Transactions on Cognitive Communications and Networking (TCCN) aims to publish high-quality manuscripts that push the boundaries of cognitive communications and networking research. Cognitive, in this context, refers to the application of perception, learning, reasoning, memory, and adaptive approaches in communication system design. The transactions welcome submissions that explore various aspects of cognitive communications and networks, focusing on innovative and holistic approaches to complex system design. Key topics covered include architecture, protocols, cross-layer design, and cognition cycle design for cognitive networks. Additionally, research on machine learning, artificial intelligence, end-to-end and distributed intelligence, software-defined networking, cognitive radios, spectrum sharing, and security and privacy issues in cognitive networks are of interest. The publication also encourages papers addressing novel services and applications enabled by these cognitive concepts.