{"title":"绿洲农业生态系统中亚美尼亚李特有种的叶绿体和核多样性。","authors":"Hedia Bourguiba, Mohamed-Amine Batnini, Chahnez Naccache, Nadia Zitouna, Neila Trifi-Farah, Jean-Marc Audergon, Lamia Krichen","doi":"10.1007/s10709-021-00127-5","DOIUrl":null,"url":null,"abstract":"<p><p>Tunisia is characterized by the presence of specific seed-propagated apricot (Prunus armeniaca L.) material which is found in the oasis agroecosystems. In order to highlight the genetic diversity, population structure, and demographic history of this germplasm, 33 apricot accessions collected from six different oasis regions in southwestern Tunisia were genotyped using 24 microsatellite markers. A total number of 111 alleles was detected with an average of 4.62 alleles per locus. Bayesian model-based clustering analysis indicated four subdivisions within the collection sampled that corresponded mainly to the geographic origin of the material. The analysis of the 33 accessions using chloroplast markers allowed the identification of 32 haplotypes. Overall, the present study highlighted the high Tunisian apricot's diversity in the traditional oasis agroecosystems with low genetic differentiation. Understanding the structure of seed-propagated apricot collection is crucial for managing collections in regard to adaptive traits for Arid and Saharan climates as well as for identifying interesting genotypes that can be integrated into international coordinated actions of breeding programs.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s10709-021-00127-5","citationCount":"2","resultStr":"{\"title\":\"Chloroplastic and nuclear diversity of endemic Prunus armeniaca L. species in the oasis agroecosystems.\",\"authors\":\"Hedia Bourguiba, Mohamed-Amine Batnini, Chahnez Naccache, Nadia Zitouna, Neila Trifi-Farah, Jean-Marc Audergon, Lamia Krichen\",\"doi\":\"10.1007/s10709-021-00127-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Tunisia is characterized by the presence of specific seed-propagated apricot (Prunus armeniaca L.) material which is found in the oasis agroecosystems. In order to highlight the genetic diversity, population structure, and demographic history of this germplasm, 33 apricot accessions collected from six different oasis regions in southwestern Tunisia were genotyped using 24 microsatellite markers. A total number of 111 alleles was detected with an average of 4.62 alleles per locus. Bayesian model-based clustering analysis indicated four subdivisions within the collection sampled that corresponded mainly to the geographic origin of the material. The analysis of the 33 accessions using chloroplast markers allowed the identification of 32 haplotypes. Overall, the present study highlighted the high Tunisian apricot's diversity in the traditional oasis agroecosystems with low genetic differentiation. Understanding the structure of seed-propagated apricot collection is crucial for managing collections in regard to adaptive traits for Arid and Saharan climates as well as for identifying interesting genotypes that can be integrated into international coordinated actions of breeding programs.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s10709-021-00127-5\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10709-021-00127-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/7/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10709-021-00127-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/7/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chloroplastic and nuclear diversity of endemic Prunus armeniaca L. species in the oasis agroecosystems.
Tunisia is characterized by the presence of specific seed-propagated apricot (Prunus armeniaca L.) material which is found in the oasis agroecosystems. In order to highlight the genetic diversity, population structure, and demographic history of this germplasm, 33 apricot accessions collected from six different oasis regions in southwestern Tunisia were genotyped using 24 microsatellite markers. A total number of 111 alleles was detected with an average of 4.62 alleles per locus. Bayesian model-based clustering analysis indicated four subdivisions within the collection sampled that corresponded mainly to the geographic origin of the material. The analysis of the 33 accessions using chloroplast markers allowed the identification of 32 haplotypes. Overall, the present study highlighted the high Tunisian apricot's diversity in the traditional oasis agroecosystems with low genetic differentiation. Understanding the structure of seed-propagated apricot collection is crucial for managing collections in regard to adaptive traits for Arid and Saharan climates as well as for identifying interesting genotypes that can be integrated into international coordinated actions of breeding programs.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.