用于虚拟筛选的高效分子编码器

Q1 Pharmacology, Toxicology and Pharmaceutics
Youjun Xu , Chenjing Cai , Shiwei Wang , Luhua Lai , Jianfeng Pei
{"title":"用于虚拟筛选的高效分子编码器","authors":"Youjun Xu ,&nbsp;Chenjing Cai ,&nbsp;Shiwei Wang ,&nbsp;Luhua Lai ,&nbsp;Jianfeng Pei","doi":"10.1016/j.ddtec.2020.08.004","DOIUrl":null,"url":null,"abstract":"<div><p>Molecular representations encoding molecular structure information play critical roles in molecular virtual screening (VS). In order to improve VS performance, an abundance of molecular encoders have been developed and tested by various VS challenges. Combinational strategies were also used to improve the performance. Deep learning (DL)-based molecular encoders have attracted much attention for their automatic information extraction ability. In this review, we present an overview of two-dimensional-, three-dimensional-, and DL-based molecular encoders, summarize recent progress of VS using DL technologies, and propose a general framework of DL molecular encoder-based VS. Perspectives on the future directions of molecular representations and applications in the prediction of active compounds are also provided.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 19-27"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.08.004","citationCount":"3","resultStr":"{\"title\":\"Efficient molecular encoders for virtual screening\",\"authors\":\"Youjun Xu ,&nbsp;Chenjing Cai ,&nbsp;Shiwei Wang ,&nbsp;Luhua Lai ,&nbsp;Jianfeng Pei\",\"doi\":\"10.1016/j.ddtec.2020.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Molecular representations encoding molecular structure information play critical roles in molecular virtual screening (VS). In order to improve VS performance, an abundance of molecular encoders have been developed and tested by various VS challenges. Combinational strategies were also used to improve the performance. Deep learning (DL)-based molecular encoders have attracted much attention for their automatic information extraction ability. In this review, we present an overview of two-dimensional-, three-dimensional-, and DL-based molecular encoders, summarize recent progress of VS using DL technologies, and propose a general framework of DL molecular encoder-based VS. Perspectives on the future directions of molecular representations and applications in the prediction of active compounds are also provided.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 19-27\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.08.004\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300123\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 3

摘要

编码分子结构信息的分子表征在分子虚拟筛选中起着至关重要的作用。为了提高VS的性能,已经开发了大量的分子编码器,并通过各种VS挑战进行了测试。还采用组合策略来提高性能。基于深度学习的分子编码器以其自动提取信息的能力而备受关注。本文综述了基于二维、三维和基于DL的分子编码器的研究进展,总结了基于DL技术的分子编码器的研究进展,提出了基于DL的分子编码器的总体框架,并对分子表征和活性化合物预测中的应用前景进行了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient molecular encoders for virtual screening

Molecular representations encoding molecular structure information play critical roles in molecular virtual screening (VS). In order to improve VS performance, an abundance of molecular encoders have been developed and tested by various VS challenges. Combinational strategies were also used to improve the performance. Deep learning (DL)-based molecular encoders have attracted much attention for their automatic information extraction ability. In this review, we present an overview of two-dimensional-, three-dimensional-, and DL-based molecular encoders, summarize recent progress of VS using DL technologies, and propose a general framework of DL molecular encoder-based VS. Perspectives on the future directions of molecular representations and applications in the prediction of active compounds are also provided.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信