Daniel Mashiach, Erin Mae Bacasen, Sunjum Singh, Timothy Kao, Lekha Yaramada, Daniel Mishail, Summer Singh, Jeffrey H. Miller
{"title":"增强表征的thyA系统突变分析在大肠杆菌:定义突变的“热”区域的基因","authors":"Daniel Mashiach, Erin Mae Bacasen, Sunjum Singh, Timothy Kao, Lekha Yaramada, Daniel Mishail, Summer Singh, Jeffrey H. Miller","doi":"10.1016/j.mrfmmm.2021.111754","DOIUrl":null,"url":null,"abstract":"<div><p>We have extensively characterized base substitution mutations in the 795 base pair (bp) long <em>E. coli thyA</em> gene to define as many of the base substitution mutational sites that inactivate the gene as possible. The resulting catalog of mutational sites constitutes a system with up to 5 times as many sites for monitoring each of the six base substitution mutations as the widely used <em>rpoB</em>/Rif<sup>r</sup> system. We have defined 75 sites for the G:C -> A:T transition, 68 sites for the G:C -> T:A transversion, 53 sites for the G:C -> C:G transversion, 49 sites for the A:T -> G:C transition, 39 sites for the A:T -> T:A transversion, and 59 sites for the A:T -> C:G transversion. The system is thus comprised of 343 base substitution mutations at 232 different base pairs, all of which can be sequenced with a single primer pair. This allows for the examination of mutational spectra using a more detailed probe of known mutations, while still allowing one to compare the number of repeated occurrences at specific sites. We have examined several mutagens and mutators with this system, and show its utility by looking at the spectrum of cisplatin, that has a single hotspot, underscoring the value of having as large an array of sites as possible at which one can monitor repeat occurrences. To test for regions of the gene that might be hotspots for a number of mutagens, or <strong>“</strong>hot” (mutaphilic) regions, we have looked at the ratio of mutations per set of an equal number of mutational sites throughout the gene. The resulting graphs suggest that there are “hot” regions at intervals, and this may reflect aspects of secondary structures, of the higher order structure of the chromosome, or perhaps the nucleoid structure of the chromosome plus histone-like protein complexes.</p></div>","PeriodicalId":49790,"journal":{"name":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","volume":"823 ","pages":"Article 111754"},"PeriodicalIF":1.5000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111754","citationCount":"1","resultStr":"{\"title\":\"Enhanced characterization of the thyA system for mutational analysis in Escherichia coli: Defining mutationally “hot” regions of the gene\",\"authors\":\"Daniel Mashiach, Erin Mae Bacasen, Sunjum Singh, Timothy Kao, Lekha Yaramada, Daniel Mishail, Summer Singh, Jeffrey H. Miller\",\"doi\":\"10.1016/j.mrfmmm.2021.111754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We have extensively characterized base substitution mutations in the 795 base pair (bp) long <em>E. coli thyA</em> gene to define as many of the base substitution mutational sites that inactivate the gene as possible. The resulting catalog of mutational sites constitutes a system with up to 5 times as many sites for monitoring each of the six base substitution mutations as the widely used <em>rpoB</em>/Rif<sup>r</sup> system. We have defined 75 sites for the G:C -> A:T transition, 68 sites for the G:C -> T:A transversion, 53 sites for the G:C -> C:G transversion, 49 sites for the A:T -> G:C transition, 39 sites for the A:T -> T:A transversion, and 59 sites for the A:T -> C:G transversion. The system is thus comprised of 343 base substitution mutations at 232 different base pairs, all of which can be sequenced with a single primer pair. This allows for the examination of mutational spectra using a more detailed probe of known mutations, while still allowing one to compare the number of repeated occurrences at specific sites. We have examined several mutagens and mutators with this system, and show its utility by looking at the spectrum of cisplatin, that has a single hotspot, underscoring the value of having as large an array of sites as possible at which one can monitor repeat occurrences. To test for regions of the gene that might be hotspots for a number of mutagens, or <strong>“</strong>hot” (mutaphilic) regions, we have looked at the ratio of mutations per set of an equal number of mutational sites throughout the gene. The resulting graphs suggest that there are “hot” regions at intervals, and this may reflect aspects of secondary structures, of the higher order structure of the chromosome, or perhaps the nucleoid structure of the chromosome plus histone-like protein complexes.</p></div>\",\"PeriodicalId\":49790,\"journal\":{\"name\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"volume\":\"823 \",\"pages\":\"Article 111754\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.mrfmmm.2021.111754\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0027510721000178\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mutation Research-Fundamental and Molecular Mechanisms of Mutagenesis","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0027510721000178","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Enhanced characterization of the thyA system for mutational analysis in Escherichia coli: Defining mutationally “hot” regions of the gene
We have extensively characterized base substitution mutations in the 795 base pair (bp) long E. coli thyA gene to define as many of the base substitution mutational sites that inactivate the gene as possible. The resulting catalog of mutational sites constitutes a system with up to 5 times as many sites for monitoring each of the six base substitution mutations as the widely used rpoB/Rifr system. We have defined 75 sites for the G:C -> A:T transition, 68 sites for the G:C -> T:A transversion, 53 sites for the G:C -> C:G transversion, 49 sites for the A:T -> G:C transition, 39 sites for the A:T -> T:A transversion, and 59 sites for the A:T -> C:G transversion. The system is thus comprised of 343 base substitution mutations at 232 different base pairs, all of which can be sequenced with a single primer pair. This allows for the examination of mutational spectra using a more detailed probe of known mutations, while still allowing one to compare the number of repeated occurrences at specific sites. We have examined several mutagens and mutators with this system, and show its utility by looking at the spectrum of cisplatin, that has a single hotspot, underscoring the value of having as large an array of sites as possible at which one can monitor repeat occurrences. To test for regions of the gene that might be hotspots for a number of mutagens, or “hot” (mutaphilic) regions, we have looked at the ratio of mutations per set of an equal number of mutational sites throughout the gene. The resulting graphs suggest that there are “hot” regions at intervals, and this may reflect aspects of secondary structures, of the higher order structure of the chromosome, or perhaps the nucleoid structure of the chromosome plus histone-like protein complexes.
期刊介绍:
Mutation Research (MR) provides a platform for publishing all aspects of DNA mutations and epimutations, from basic evolutionary aspects to translational applications in genetic and epigenetic diagnostics and therapy. Mutations are defined as all possible alterations in DNA sequence and sequence organization, from point mutations to genome structural variation, chromosomal aberrations and aneuploidy. Epimutations are defined as alterations in the epigenome, i.e., changes in DNA methylation, histone modification and small regulatory RNAs.
MR publishes articles in the following areas:
Of special interest are basic mechanisms through which DNA damage and mutations impact development and differentiation, stem cell biology and cell fate in general, including various forms of cell death and cellular senescence.
The study of genome instability in human molecular epidemiology and in relation to complex phenotypes, such as human disease, is considered a growing area of importance.
Mechanisms of (epi)mutation induction, for example, during DNA repair, replication or recombination; novel methods of (epi)mutation detection, with a focus on ultra-high-throughput sequencing.
Landscape of somatic mutations and epimutations in cancer and aging.
Role of de novo mutations in human disease and aging; mutations in population genomics.
Interactions between mutations and epimutations.
The role of epimutations in chromatin structure and function.
Mitochondrial DNA mutations and their consequences in terms of human disease and aging.
Novel ways to generate mutations and epimutations in cell lines and animal models.