B. T. Balamurali, Tan Enyi, Christopher Johann Clarke, Sim Yuh Harn, Jer-Ming Chen
{"title":"面罩设计与材料选择的声学效果","authors":"B. T. Balamurali, Tan Enyi, Christopher Johann Clarke, Sim Yuh Harn, Jer-Ming Chen","doi":"10.1007/s40857-021-00245-2","DOIUrl":null,"url":null,"abstract":"<div><p>The widespread adoption of face masks is now a standard public health response to the 2020 pandemic. Although studies have shown that wearing a face mask interferes with speech and intelligibility, relating the acoustic response of the mask to design parameters such as fabric choice, number of layers and mask geometry is not well understood. Using a dummy head mounted with a loudspeaker at its mouth generating a broadband signal, we report the acoustic response associated with 10 different masks (different material/design) and the effect of material layers; a small number of masks were found to be almost acoustically transparent (minimal losses). While different mask material and design result in different frequency responses, we find that material selection has somewhat greater influence on transmission characteristics than mask design or geometry choices.</p></div>","PeriodicalId":54355,"journal":{"name":"Acoustics Australia","volume":"49 3","pages":"505 - 512"},"PeriodicalIF":1.7000,"publicationDate":"2021-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40857-021-00245-2","citationCount":"11","resultStr":"{\"title\":\"Acoustic Effect of Face Mask Design and Material Choice\",\"authors\":\"B. T. Balamurali, Tan Enyi, Christopher Johann Clarke, Sim Yuh Harn, Jer-Ming Chen\",\"doi\":\"10.1007/s40857-021-00245-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The widespread adoption of face masks is now a standard public health response to the 2020 pandemic. Although studies have shown that wearing a face mask interferes with speech and intelligibility, relating the acoustic response of the mask to design parameters such as fabric choice, number of layers and mask geometry is not well understood. Using a dummy head mounted with a loudspeaker at its mouth generating a broadband signal, we report the acoustic response associated with 10 different masks (different material/design) and the effect of material layers; a small number of masks were found to be almost acoustically transparent (minimal losses). While different mask material and design result in different frequency responses, we find that material selection has somewhat greater influence on transmission characteristics than mask design or geometry choices.</p></div>\",\"PeriodicalId\":54355,\"journal\":{\"name\":\"Acoustics Australia\",\"volume\":\"49 3\",\"pages\":\"505 - 512\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40857-021-00245-2\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acoustics Australia\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40857-021-00245-2\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acoustics Australia","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s40857-021-00245-2","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acoustic Effect of Face Mask Design and Material Choice
The widespread adoption of face masks is now a standard public health response to the 2020 pandemic. Although studies have shown that wearing a face mask interferes with speech and intelligibility, relating the acoustic response of the mask to design parameters such as fabric choice, number of layers and mask geometry is not well understood. Using a dummy head mounted with a loudspeaker at its mouth generating a broadband signal, we report the acoustic response associated with 10 different masks (different material/design) and the effect of material layers; a small number of masks were found to be almost acoustically transparent (minimal losses). While different mask material and design result in different frequency responses, we find that material selection has somewhat greater influence on transmission characteristics than mask design or geometry choices.
期刊介绍:
Acoustics Australia, the journal of the Australian Acoustical Society, has been publishing high quality research and technical papers in all areas of acoustics since commencement in 1972. The target audience for the journal includes both researchers and practitioners. It aims to publish papers and technical notes that are relevant to current acoustics and of interest to members of the Society. These include but are not limited to: Architectural and Building Acoustics, Environmental Noise, Underwater Acoustics, Engineering Noise and Vibration Control, Occupational Noise Management, Hearing, Musical Acoustics.