{"title":"睡眠与代谢:下丘脑外侧神经元的意义。","authors":"Lukas T Oesch, Antoine R Adamantidis","doi":"10.1159/000514966","DOIUrl":null,"url":null,"abstract":"<p><p>During the last decade, optogenetic-based circuit mapping has become one of the most common approaches to systems neuroscience, and amassing studies have expanded our understanding of brain structures causally involved in the regulation of sleep-wake cycles. Recent imaging technologies enable the functional mapping of cellular activity, from population down to single-cell resolution, across a broad repertoire of behaviors and physiological processes, including sleep-wake states. This chapter summarizes experimental evidence implicating hypocretins/orexins, melanin-concentrating hormone, and inhibitory neurons from the lateral hypothalamus (LH) in forming an intricate network involved in regulating sleep and metabolism, including feeding behaviors. It further confirms the dual sleep-metabolic functions of LH cells, and sheds light on a possible mechanism underlying brain plasticity during sleep and metabolic disorders.</p>","PeriodicalId":35285,"journal":{"name":"Frontiers of Neurology and Neuroscience","volume":"45 ","pages":"75-90"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1159/000514966","citationCount":"8","resultStr":"{\"title\":\"Sleep and Metabolism: Implication of Lateral Hypothalamic Neurons.\",\"authors\":\"Lukas T Oesch, Antoine R Adamantidis\",\"doi\":\"10.1159/000514966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During the last decade, optogenetic-based circuit mapping has become one of the most common approaches to systems neuroscience, and amassing studies have expanded our understanding of brain structures causally involved in the regulation of sleep-wake cycles. Recent imaging technologies enable the functional mapping of cellular activity, from population down to single-cell resolution, across a broad repertoire of behaviors and physiological processes, including sleep-wake states. This chapter summarizes experimental evidence implicating hypocretins/orexins, melanin-concentrating hormone, and inhibitory neurons from the lateral hypothalamus (LH) in forming an intricate network involved in regulating sleep and metabolism, including feeding behaviors. It further confirms the dual sleep-metabolic functions of LH cells, and sheds light on a possible mechanism underlying brain plasticity during sleep and metabolic disorders.</p>\",\"PeriodicalId\":35285,\"journal\":{\"name\":\"Frontiers of Neurology and Neuroscience\",\"volume\":\"45 \",\"pages\":\"75-90\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1159/000514966\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Neurology and Neuroscience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1159/000514966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/28 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Neurology and Neuroscience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000514966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/28 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
Sleep and Metabolism: Implication of Lateral Hypothalamic Neurons.
During the last decade, optogenetic-based circuit mapping has become one of the most common approaches to systems neuroscience, and amassing studies have expanded our understanding of brain structures causally involved in the regulation of sleep-wake cycles. Recent imaging technologies enable the functional mapping of cellular activity, from population down to single-cell resolution, across a broad repertoire of behaviors and physiological processes, including sleep-wake states. This chapter summarizes experimental evidence implicating hypocretins/orexins, melanin-concentrating hormone, and inhibitory neurons from the lateral hypothalamus (LH) in forming an intricate network involved in regulating sleep and metabolism, including feeding behaviors. It further confirms the dual sleep-metabolic functions of LH cells, and sheds light on a possible mechanism underlying brain plasticity during sleep and metabolic disorders.
期刊介绍:
Focusing on topics in the fields of both Neurosciences and Neurology, this series provides current and unique information in basic and clinical advances on the nervous system and its disorders.