Samantha C Puglisi, Alexis L Mackiewicz, Amir Ardeshir, Laura M Garzel, Kari L Christe
{"title":"糖尿病恒河猴(Macaca mulatta)使用CGM装置时甘精胰岛素和去gludec的比较。","authors":"Samantha C Puglisi, Alexis L Mackiewicz, Amir Ardeshir, Laura M Garzel, Kari L Christe","doi":"10.30802/AALAS-CM-20-000075","DOIUrl":null,"url":null,"abstract":"<p><p>Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study's 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (<i>Macaca mulatta</i>) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.</p>","PeriodicalId":10659,"journal":{"name":"Comparative medicine","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223866/pdf/cm2021000247.pdf","citationCount":"1","resultStr":"{\"title\":\"Comparison of Insulins Glargine and Degludec in Diabetic Rhesus Macaques (<i>Macaca mulatta</i>) with CGM Devices.\",\"authors\":\"Samantha C Puglisi, Alexis L Mackiewicz, Amir Ardeshir, Laura M Garzel, Kari L Christe\",\"doi\":\"10.30802/AALAS-CM-20-000075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study's 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (<i>Macaca mulatta</i>) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.</p>\",\"PeriodicalId\":10659,\"journal\":{\"name\":\"Comparative medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223866/pdf/cm2021000247.pdf\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Comparative medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.30802/AALAS-CM-20-000075\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.30802/AALAS-CM-20-000075","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/25 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
Comparison of Insulins Glargine and Degludec in Diabetic Rhesus Macaques (Macaca mulatta) with CGM Devices.
Treating and monitoring type 2 diabetes mellitus (T2DM) in NHP can be challenging. Multiple insulin and hypoglycemic therapies and management tools exist, but few studies demonstrate their benefits in a NHP clinical setting. The insulins glargine and degludec are long-acting insulins; their duration of action in humans exceeds 24 and 42 h, respectively. In the first of this study's 2 components, we evaluated whether insulin degludec could be dosed daily at equivalent units to glargine to achieve comparable blood glucose (BG) reduction in diabetic rhesus macaques (Macaca mulatta) with continuous glucose monitoring (CGM) devices. The second component assessed the accuracy of CGM devices in rhesus macaques by comparing time-stamped CGM interstitial glucose values, glucometer BG readings, and BG levels measured by using an automated clinical chemistry analyzer from samples that were collected at the beginning and end of each CGM device placement. The CGM devices collected a total of 21,637 glucose data points from 6 diabetic rhesus macaques that received glargine followed by degludec every 24 h for 1 wk each. Ultimately, glucose values averaged 29 mg/dL higher with degludec than with glargine. Glucose values were comparable between the CGM device, glucometer, and chemistry analyzer, thus validating that CGM devices as reliable for measuring BG levels in rhesus macaques. Although glargine was superior to degludec when given at the same dose (units/day), both are safe and effective treatment options. Glucose values from CGM, glucometers, and chemistry analyzers provided results that were analogous to BG values in rhesus macaques. Our report further highlights critical clinical aspects of using glargine as compared with degludec in NHP and the benefits of using CGM devices in macaques.
期刊介绍:
Comparative Medicine (CM), an international journal of comparative and experimental medicine, is the leading English-language publication in the field and is ranked by the Science Citation Index in the upper third of all scientific journals. The mission of CM is to disseminate high-quality, peer-reviewed information that expands biomedical knowledge and promotes human and animal health through the study of laboratory animal disease, animal models of disease, and basic biologic mechanisms related to disease in people and animals.