铁下垂抵抗代谢检查点。

IF 2.6 Q3 ONCOLOGY
Molecular and Cellular Oncology Pub Date : 2021-03-31 eCollection Date: 2021-01-01 DOI:10.1080/23723556.2021.1901558
Jiao Liu, Rui Kang, Daolin Tang
{"title":"铁下垂抵抗代谢检查点。","authors":"Jiao Liu,&nbsp;Rui Kang,&nbsp;Daolin Tang","doi":"10.1080/23723556.2021.1901558","DOIUrl":null,"url":null,"abstract":"<p><p>The metabolic checkpoint of ferroptosis remains obscure. We find that glucose favors system xc<sup>-</sup> inhibitor-induced ferroptosis by activating pyruvate oxidation, thereby promoting fatty acid synthesis and subsequent lipid peroxidation. In contrast, the upregulation of pyruvate dehydrogenase kinase 4 (PDK4) switches into a ferroptosis-resistant state in pancreatic cancer cells.</p>","PeriodicalId":37292,"journal":{"name":"Molecular and Cellular Oncology","volume":"8 3","pages":"1901558"},"PeriodicalIF":2.6000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23723556.2021.1901558","citationCount":"6","resultStr":"{\"title\":\"Metabolic checkpoint of ferroptosis resistance.\",\"authors\":\"Jiao Liu,&nbsp;Rui Kang,&nbsp;Daolin Tang\",\"doi\":\"10.1080/23723556.2021.1901558\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The metabolic checkpoint of ferroptosis remains obscure. We find that glucose favors system xc<sup>-</sup> inhibitor-induced ferroptosis by activating pyruvate oxidation, thereby promoting fatty acid synthesis and subsequent lipid peroxidation. In contrast, the upregulation of pyruvate dehydrogenase kinase 4 (PDK4) switches into a ferroptosis-resistant state in pancreatic cancer cells.</p>\",\"PeriodicalId\":37292,\"journal\":{\"name\":\"Molecular and Cellular Oncology\",\"volume\":\"8 3\",\"pages\":\"1901558\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2021-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23723556.2021.1901558\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular and Cellular Oncology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23723556.2021.1901558\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q3\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular and Cellular Oncology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23723556.2021.1901558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 6

摘要

铁下垂的代谢检查点仍不清楚。我们发现葡萄糖通过激活丙酮酸氧化,从而促进脂肪酸合成和随后的脂质过氧化,有利于系统xc抑制剂诱导的铁死亡。相反,在胰腺癌细胞中,丙酮酸脱氢酶激酶4 (PDK4)的上调会转换为抗凋亡状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Metabolic checkpoint of ferroptosis resistance.

The metabolic checkpoint of ferroptosis remains obscure. We find that glucose favors system xc- inhibitor-induced ferroptosis by activating pyruvate oxidation, thereby promoting fatty acid synthesis and subsequent lipid peroxidation. In contrast, the upregulation of pyruvate dehydrogenase kinase 4 (PDK4) switches into a ferroptosis-resistant state in pancreatic cancer cells.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular and Cellular Oncology
Molecular and Cellular Oncology Biochemistry, Genetics and Molecular Biology-Cancer Research
CiteScore
3.20
自引率
0.00%
发文量
18
期刊介绍: For a long time, solid neoplasms have been viewed as relatively homogeneous entities composed for the most part of malignant cells. It is now clear that tumors are highly heterogeneous structures that evolve in the context of intimate interactions between cancer cells and endothelial, stromal as well as immune cells. During the past few years, experimental and clinical oncologists have witnessed several conceptual transitions of this type. Molecular and Cellular Oncology (MCO) emerges within this conceptual framework as a high-profile forum for the publication of fundamental, translational and clinical research on cancer. The scope of MCO is broad. Submissions dealing with all aspects of oncogenesis, tumor progression and response to therapy will be welcome, irrespective of whether they focus on solid or hematological neoplasms. MCO has gathered leading scientists with expertise in multiple areas of cancer research and other fields of investigation to constitute a large, interdisciplinary, Editorial Board that will ensure the quality of articles accepted for publication. MCO will publish Original Research Articles, Brief Reports, Reviews, Short Reviews, Commentaries, Author Views (auto-commentaries) and Meeting Reports dealing with all aspects of cancer research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信