Sevan Harput, Kirsten Christensen-Jeffries, Jemma Brown, Jiaqi Zhu, Ge Zhang, Robert J Eckersley, Chris Dunsby, Meng-Xing Tang
{"title":"容积超分辨率超声成像的三维运动校正。","authors":"Sevan Harput, Kirsten Christensen-Jeffries, Jemma Brown, Jiaqi Zhu, Ge Zhang, Robert J Eckersley, Chris Dunsby, Meng-Xing Tang","doi":"10.1109/ULTSYM.2018.8580145","DOIUrl":null,"url":null,"abstract":"<p><p>Motion during image acquisition can cause image degradation in all medical imaging modalities. This is particularly relevant in 2-D ultrasound imaging, since out-of-plane motion can only be compensated for movements smaller than elevational beamwidth of the transducer. Localization based super-resolution imaging creates even a more challenging motion correction task due to the requirement of a high number of acquisitions to form a single super-resolved frame. In this study, an extension of two-stage motion correction method is proposed for 3-D motion correction. Motion estimation was performed on high volumetric rate ultrasound acquisitions with a handheld probe. The capability of the proposed method was demonstrated with a 3-D microvascular flow simulation to compensate for handheld probe motion. Results showed that two-stage motion correction method reduced the average localization error from 136 to 18 <i>μ</i>m.</p>","PeriodicalId":73288,"journal":{"name":"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium","volume":"2018 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610905/pdf/EMS124815.pdf","citationCount":"0","resultStr":"{\"title\":\"3-D Motion Correction for Volumetric Super-Resolution Ultrasound Imaging.\",\"authors\":\"Sevan Harput, Kirsten Christensen-Jeffries, Jemma Brown, Jiaqi Zhu, Ge Zhang, Robert J Eckersley, Chris Dunsby, Meng-Xing Tang\",\"doi\":\"10.1109/ULTSYM.2018.8580145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Motion during image acquisition can cause image degradation in all medical imaging modalities. This is particularly relevant in 2-D ultrasound imaging, since out-of-plane motion can only be compensated for movements smaller than elevational beamwidth of the transducer. Localization based super-resolution imaging creates even a more challenging motion correction task due to the requirement of a high number of acquisitions to form a single super-resolved frame. In this study, an extension of two-stage motion correction method is proposed for 3-D motion correction. Motion estimation was performed on high volumetric rate ultrasound acquisitions with a handheld probe. The capability of the proposed method was demonstrated with a 3-D microvascular flow simulation to compensate for handheld probe motion. Results showed that two-stage motion correction method reduced the average localization error from 136 to 18 <i>μ</i>m.</p>\",\"PeriodicalId\":73288,\"journal\":{\"name\":\"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium\",\"volume\":\"2018 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7610905/pdf/EMS124815.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ULTSYM.2018.8580145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2018/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Ultrasonics Symposium : [proceedings]. IEEE International Ultrasonics Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ULTSYM.2018.8580145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2018/1/1 0:00:00","PubModel":"eCollection","JCR":"","JCRName":"","Score":null,"Total":0}
3-D Motion Correction for Volumetric Super-Resolution Ultrasound Imaging.
Motion during image acquisition can cause image degradation in all medical imaging modalities. This is particularly relevant in 2-D ultrasound imaging, since out-of-plane motion can only be compensated for movements smaller than elevational beamwidth of the transducer. Localization based super-resolution imaging creates even a more challenging motion correction task due to the requirement of a high number of acquisitions to form a single super-resolved frame. In this study, an extension of two-stage motion correction method is proposed for 3-D motion correction. Motion estimation was performed on high volumetric rate ultrasound acquisitions with a handheld probe. The capability of the proposed method was demonstrated with a 3-D microvascular flow simulation to compensate for handheld probe motion. Results showed that two-stage motion correction method reduced the average localization error from 136 to 18 μm.