{"title":"在参数限制下,采用包络法简明地计算半参数有效分数。","authors":"Constantine E Frangakis","doi":"10.1515/ijb-2019-0043","DOIUrl":null,"url":null,"abstract":"<p><p>When addressing semiparametric problems with parametric restrictions (assumptions on the distribution), the efficient score (ES) of a parameter is often important for generating useful estimates. However, usual derivation of ES, although conceptually simple, is often lengthy and with many steps that do not help in understanding why its final form arises. This drawback often casts onto semiparametric estimation a mantle that can turn away otherwise able doctoral students or researchers. Here we show that many ESs can be obtained as a one-step derivation after we characterize those features (envelopes) of the unrestricted problem that are constrained in the restricted problem. We demonstrate our arguments in three problems with known ES but whose usual derivations are lengthy. We show that the envelope-based derivation is dramatically explanatory and compact, needing essentially two lines where the standard approach needs 10 or more pages. This suggests that the envelope method can add useful intuition and exegesis to both teaching and research of semiparametric estimation.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/ijb-2019-0043","citationCount":"0","resultStr":"{\"title\":\"The method of envelopes to concisely calculate semiparametric efficient scores under parametric restrictions.\",\"authors\":\"Constantine E Frangakis\",\"doi\":\"10.1515/ijb-2019-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When addressing semiparametric problems with parametric restrictions (assumptions on the distribution), the efficient score (ES) of a parameter is often important for generating useful estimates. However, usual derivation of ES, although conceptually simple, is often lengthy and with many steps that do not help in understanding why its final form arises. This drawback often casts onto semiparametric estimation a mantle that can turn away otherwise able doctoral students or researchers. Here we show that many ESs can be obtained as a one-step derivation after we characterize those features (envelopes) of the unrestricted problem that are constrained in the restricted problem. We demonstrate our arguments in three problems with known ES but whose usual derivations are lengthy. We show that the envelope-based derivation is dramatically explanatory and compact, needing essentially two lines where the standard approach needs 10 or more pages. This suggests that the envelope method can add useful intuition and exegesis to both teaching and research of semiparametric estimation.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/ijb-2019-0043\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/ijb-2019-0043\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/ijb-2019-0043","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
The method of envelopes to concisely calculate semiparametric efficient scores under parametric restrictions.
When addressing semiparametric problems with parametric restrictions (assumptions on the distribution), the efficient score (ES) of a parameter is often important for generating useful estimates. However, usual derivation of ES, although conceptually simple, is often lengthy and with many steps that do not help in understanding why its final form arises. This drawback often casts onto semiparametric estimation a mantle that can turn away otherwise able doctoral students or researchers. Here we show that many ESs can be obtained as a one-step derivation after we characterize those features (envelopes) of the unrestricted problem that are constrained in the restricted problem. We demonstrate our arguments in three problems with known ES but whose usual derivations are lengthy. We show that the envelope-based derivation is dramatically explanatory and compact, needing essentially two lines where the standard approach needs 10 or more pages. This suggests that the envelope method can add useful intuition and exegesis to both teaching and research of semiparametric estimation.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.