{"title":"载脂蛋白M信号通路的调控研究进展。","authors":"Gangli Cheng, Lu Zheng","doi":"10.1080/10799893.2021.1924203","DOIUrl":null,"url":null,"abstract":"<p><p>Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of <i>in vivo</i> and <i>in vitro</i> factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 3","pages":"285-292"},"PeriodicalIF":2.6000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2021.1924203","citationCount":"4","resultStr":"{\"title\":\"Regulation of the apolipoprotein M signaling pathway: a review.\",\"authors\":\"Gangli Cheng, Lu Zheng\",\"doi\":\"10.1080/10799893.2021.1924203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of <i>in vivo</i> and <i>in vitro</i> factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.</p>\",\"PeriodicalId\":16962,\"journal\":{\"name\":\"Journal of Receptors and Signal Transduction\",\"volume\":\"42 3\",\"pages\":\"285-292\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/10799893.2021.1924203\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Receptors and Signal Transduction\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/10799893.2021.1924203\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1924203","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/18 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Regulation of the apolipoprotein M signaling pathway: a review.
Apolipoprotein M (apoM), an apolipoprotein predominantly associated with high-density lipoprotein (HDL), is considered a mediator of the numerous roles of HDL, including reverse cholesterol transport, anti-atherosclerotic, anti-inflammatory and anti-oxidant, and mediates pre-β-HDL formation. ApoM expression is known to be regulated by a variety of in vivo and in vitro factors. The transcription factors farnesoid X receptor, small heterodimer partner, liver receptor homolog-1, and liver X receptor comprise the signaling cascade network that regulates the expression and secretion of apoM. Moreover, hepatocyte nuclear factor-1α and c-Jun/JunB have been demonstrated to exert opposing regulatory effects on apoM through competitive binding to the same sites in the proximal region of the apoM gene. Furthermore, as a carrier and modulator of sphingosine 1-phosphate (S1P), apoM binds to S1P within its hydrophobic-binding pocket. The apoM/S1P axis has been discovered to play a crucial role in the apoM signaling pathway through its ability to regulate glucose and lipid metabolism, vascular barrier homeostasis, inflammatory response and other pathological and physiological processes. Using the findings of previous studies, the present review aimed to summarize the regulation of apoM expression by various factors and its role in different physiological and pathological conditions, and provide a new perspective for the further treatment of these diseases.
期刊介绍:
Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services:
BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.