Bart Van Trigt, Liset W Vliegen, Ton Ajr Leenen, DirkJan Hej Veeger
{"title":"尺侧副韧带在体外和体内棒球投球研究中的负荷悖论(叙述性回顾)。","authors":"Bart Van Trigt, Liset W Vliegen, Ton Ajr Leenen, DirkJan Hej Veeger","doi":"10.1080/23335432.2021.1916405","DOIUrl":null,"url":null,"abstract":"ABSTRACT Ulnar collateral ligament (UCL) weakening or tears occur in 16% of professional baseball pitchers. To prevent players from sustaining a UCL injury, it is important to understand the relationship between the UCL properties and elbow stabilizers with the load on the UCL during pitching. In-vitro studies showed that the ultimate external valgus torque of 34 Nm would rupture the UCL, which is in apparent conflict with the reported peak valgus torques in pitching (40–120 Nm). Assuming both observations are correct, the question rises why ‘only’ 16 out of 100 professional pitchers sustain a UCL rupture. Underestimation of the effect of other structures in in-vivo studies is most likely the explanation of this mismatch because the calculated in-vivo torque also includes possible contributions of functional and structural stabilizers. In-vitro studies show that the flexor-pronator mass has the potential to counteract valgus torque directly, whereas the elbow flexor-extensor muscles combined with the humeroradial joint might have an indirect effect on valgus torque by increasing the joint compression force. Accurate experimental electromyography data and a more detailed (musculoskeletal)mechanical model of the elbow are needed to investigate if and to what extent the structural and functional stabilizers can shield the UCL during pitching.","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":" ","pages":"19-29"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2021.1916405","citationCount":"3","resultStr":"{\"title\":\"The ulnar collateral ligament loading paradox between in-vitro and in-vivo studies on baseball pitching (narrative review).\",\"authors\":\"Bart Van Trigt, Liset W Vliegen, Ton Ajr Leenen, DirkJan Hej Veeger\",\"doi\":\"10.1080/23335432.2021.1916405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT Ulnar collateral ligament (UCL) weakening or tears occur in 16% of professional baseball pitchers. To prevent players from sustaining a UCL injury, it is important to understand the relationship between the UCL properties and elbow stabilizers with the load on the UCL during pitching. In-vitro studies showed that the ultimate external valgus torque of 34 Nm would rupture the UCL, which is in apparent conflict with the reported peak valgus torques in pitching (40–120 Nm). Assuming both observations are correct, the question rises why ‘only’ 16 out of 100 professional pitchers sustain a UCL rupture. Underestimation of the effect of other structures in in-vivo studies is most likely the explanation of this mismatch because the calculated in-vivo torque also includes possible contributions of functional and structural stabilizers. In-vitro studies show that the flexor-pronator mass has the potential to counteract valgus torque directly, whereas the elbow flexor-extensor muscles combined with the humeroradial joint might have an indirect effect on valgus torque by increasing the joint compression force. Accurate experimental electromyography data and a more detailed (musculoskeletal)mechanical model of the elbow are needed to investigate if and to what extent the structural and functional stabilizers can shield the UCL during pitching.\",\"PeriodicalId\":52124,\"journal\":{\"name\":\"International Biomechanics\",\"volume\":\" \",\"pages\":\"19-29\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23335432.2021.1916405\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335432.2021.1916405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2021.1916405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
The ulnar collateral ligament loading paradox between in-vitro and in-vivo studies on baseball pitching (narrative review).
ABSTRACT Ulnar collateral ligament (UCL) weakening or tears occur in 16% of professional baseball pitchers. To prevent players from sustaining a UCL injury, it is important to understand the relationship between the UCL properties and elbow stabilizers with the load on the UCL during pitching. In-vitro studies showed that the ultimate external valgus torque of 34 Nm would rupture the UCL, which is in apparent conflict with the reported peak valgus torques in pitching (40–120 Nm). Assuming both observations are correct, the question rises why ‘only’ 16 out of 100 professional pitchers sustain a UCL rupture. Underestimation of the effect of other structures in in-vivo studies is most likely the explanation of this mismatch because the calculated in-vivo torque also includes possible contributions of functional and structural stabilizers. In-vitro studies show that the flexor-pronator mass has the potential to counteract valgus torque directly, whereas the elbow flexor-extensor muscles combined with the humeroradial joint might have an indirect effect on valgus torque by increasing the joint compression force. Accurate experimental electromyography data and a more detailed (musculoskeletal)mechanical model of the elbow are needed to investigate if and to what extent the structural and functional stabilizers can shield the UCL during pitching.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.