Jeff S Wesner, Dan Van Peursem, José D Flores, Yuhlong Lio, Chelsea A Wesner
{"title":"预测美国南达科他州因 COVID-19 而住院的人数。","authors":"Jeff S Wesner, Dan Van Peursem, José D Flores, Yuhlong Lio, Chelsea A Wesner","doi":"10.1007/s41666-021-00094-8","DOIUrl":null,"url":null,"abstract":"<p><p>Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s41666-021-00094-8.</p>","PeriodicalId":36444,"journal":{"name":"Journal of Healthcare Informatics Research","volume":"5 2","pages":"218-229"},"PeriodicalIF":5.9000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088317/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA.\",\"authors\":\"Jeff S Wesner, Dan Van Peursem, José D Flores, Yuhlong Lio, Chelsea A Wesner\",\"doi\":\"10.1007/s41666-021-00094-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1007/s41666-021-00094-8.</p>\",\"PeriodicalId\":36444,\"journal\":{\"name\":\"Journal of Healthcare Informatics Research\",\"volume\":\"5 2\",\"pages\":\"218-229\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088317/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Healthcare Informatics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s41666-021-00094-8\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Healthcare Informatics Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s41666-021-00094-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Computer Science","Score":null,"Total":0}
Forecasting Hospitalizations Due to COVID-19 in South Dakota, USA.
Anticipating the number of hospital beds needed for patients with COVID-19 remains a challenge. Early efforts to predict hospital bed needs focused on deriving predictions from SIR models, largely at the level of countries, provinces, or states. In the USA, these models rely on data reported by state health agencies. However, predicting disease and hospitalization dynamics at the state level is complicated by geographic variation in disease parameters. In addition, it is difficult to make forecasts early in a pandemic due to minimal data. Bayesian approaches that allow models to be specified with informed prior information from areas that have already completed a disease curve can serve as prior estimates for areas that are beginning their curve. Here, a Bayesian non-linear regression (Weibull function) was used to forecast cumulative and active COVID-19 hospitalizations for SD, USA, based on data available up to 2020-07-22. As expected, early forecasts were dominated by prior information, which was derived from New York City. Importantly, hospitalization trends differed within South Dakota due to early peaks in an urban area, followed by later peaks in rural areas of the state. Combining these trends led to altered forecasts with relevant policy implications.
Supplementary information: The online version contains supplementary material available at 10.1007/s41666-021-00094-8.
期刊介绍:
Journal of Healthcare Informatics Research serves as a publication venue for the innovative technical contributions highlighting analytics, systems, and human factors research in healthcare informatics.Journal of Healthcare Informatics Research is concerned with the application of computer science principles, information science principles, information technology, and communication technology to address problems in healthcare, and everyday wellness. Journal of Healthcare Informatics Research highlights the most cutting-edge technical contributions in computing-oriented healthcare informatics. The journal covers three major tracks: (1) analytics—focuses on data analytics, knowledge discovery, predictive modeling; (2) systems—focuses on building healthcare informatics systems (e.g., architecture, framework, design, engineering, and application); (3) human factors—focuses on understanding users or context, interface design, health behavior, and user studies of healthcare informatics applications. Topics include but are not limited to: · healthcare software architecture, framework, design, and engineering;· electronic health records· medical data mining· predictive modeling· medical information retrieval· medical natural language processing· healthcare information systems· smart health and connected health· social media analytics· mobile healthcare· medical signal processing· human factors in healthcare· usability studies in healthcare· user-interface design for medical devices and healthcare software· health service delivery· health games· security and privacy in healthcare· medical recommender system· healthcare workflow management· disease profiling and personalized treatment· visualization of medical data· intelligent medical devices and sensors· RFID solutions for healthcare· healthcare decision analytics and support systems· epidemiological surveillance systems and intervention modeling· consumer and clinician health information needs, seeking, sharing, and use· semantic Web, linked data, and ontology· collaboration technologies for healthcare· assistive and adaptive ubiquitous computing technologies· statistics and quality of medical data· healthcare delivery in developing countries· health systems modeling and simulation· computer-aided diagnosis