Adel A. Alofairi, Emad Mabrouk, Ibrahim E. Elsemman
{"title":"支配蛋白质相互作用网络的约束模型","authors":"Adel A. Alofairi, Emad Mabrouk, Ibrahim E. Elsemman","doi":"10.1049/syb2.12021","DOIUrl":null,"url":null,"abstract":"<p>The minimum dominating set (MDSet) comprises the smallest number of graph nodes, where other graph nodes are connected with at least one MDSet node. The MDSet has been successfully applied to extract proteins that control protein–protein interaction (PPI) networks and to reveal the correlation between structural analysis and biological functions. Although the PPI network contains many MDSets, the identification of multiple MDSets is an NP-complete problem, and it is difficult to determine the best MDSets, enriched with biological functions. Therefore, the MDSet model needs to be further expanded and validated to find constrained solutions that differ from those generated by the traditional models. Moreover, by identifying the critical set of the network, the set of nodes common to all MDSets can be time-consuming. Herein, the authors adopted the minimisation of metabolic adjustment (MOMA) algorithm to develop a new framework, called maximisation of interaction adjustment (MOIA). In MOIA, they provide three models; the first one generates two MDSets with a minimum number of shared proteins, the second model generates constrained multiple MDSets (<math>\n <mrow>\n <mi>k</mi>\n </mrow></math>-MDSets), and the third model generates user-defined MDSets, containing the maximum number of essential genes and/or other important genes of the PPI network. In practice, these models significantly reduce the cost of finding the critical set and classifying the graph nodes. Herein, the authors termed the critical set as the <math>\n <mrow>\n <mi>k</mi>\n </mrow></math>-critical set, where <math>\n <mrow>\n <mi>k</mi>\n </mrow></math> is the number of MDSets generated by the proposed model. Then, they defined a new set of proteins called the <math>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow></math>-critical set, where each node belongs to <math>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow></math> MDSets. This set has been shown to be as important as the <math>\n <mrow>\n <mi>k</mi>\n </mrow></math>-critical set and contains many essential genes, transcription factors, and protein kinases as the <math>\n <mrow>\n <mi>k</mi>\n </mrow></math>-critical set. The <math>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n <mo>)</mo>\n </mrow></math>-critical set can be used to extend the search for drug target proteins. Based on the performance of the MOIA models, the authors believe the proposed methods contribute to answering key questions about the MDSets of PPI networks, and their results and analysis can be extended to other network types.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675806/pdf/","citationCount":"1","resultStr":"{\"title\":\"Constraint-based models for dominating protein interaction networks\",\"authors\":\"Adel A. Alofairi, Emad Mabrouk, Ibrahim E. Elsemman\",\"doi\":\"10.1049/syb2.12021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The minimum dominating set (MDSet) comprises the smallest number of graph nodes, where other graph nodes are connected with at least one MDSet node. The MDSet has been successfully applied to extract proteins that control protein–protein interaction (PPI) networks and to reveal the correlation between structural analysis and biological functions. Although the PPI network contains many MDSets, the identification of multiple MDSets is an NP-complete problem, and it is difficult to determine the best MDSets, enriched with biological functions. Therefore, the MDSet model needs to be further expanded and validated to find constrained solutions that differ from those generated by the traditional models. Moreover, by identifying the critical set of the network, the set of nodes common to all MDSets can be time-consuming. Herein, the authors adopted the minimisation of metabolic adjustment (MOMA) algorithm to develop a new framework, called maximisation of interaction adjustment (MOIA). In MOIA, they provide three models; the first one generates two MDSets with a minimum number of shared proteins, the second model generates constrained multiple MDSets (<math>\\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-MDSets), and the third model generates user-defined MDSets, containing the maximum number of essential genes and/or other important genes of the PPI network. In practice, these models significantly reduce the cost of finding the critical set and classifying the graph nodes. Herein, the authors termed the critical set as the <math>\\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-critical set, where <math>\\n <mrow>\\n <mi>k</mi>\\n </mrow></math> is the number of MDSets generated by the proposed model. Then, they defined a new set of proteins called the <math>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow></math>-critical set, where each node belongs to <math>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow></math> MDSets. This set has been shown to be as important as the <math>\\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-critical set and contains many essential genes, transcription factors, and protein kinases as the <math>\\n <mrow>\\n <mi>k</mi>\\n </mrow></math>-critical set. The <math>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n <mo>)</mo>\\n </mrow></math>-critical set can be used to extend the search for drug target proteins. Based on the performance of the MOIA models, the authors believe the proposed methods contribute to answering key questions about the MDSets of PPI networks, and their results and analysis can be extended to other network types.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2021-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8675806/pdf/\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12021\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/syb2.12021","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Constraint-based models for dominating protein interaction networks
The minimum dominating set (MDSet) comprises the smallest number of graph nodes, where other graph nodes are connected with at least one MDSet node. The MDSet has been successfully applied to extract proteins that control protein–protein interaction (PPI) networks and to reveal the correlation between structural analysis and biological functions. Although the PPI network contains many MDSets, the identification of multiple MDSets is an NP-complete problem, and it is difficult to determine the best MDSets, enriched with biological functions. Therefore, the MDSet model needs to be further expanded and validated to find constrained solutions that differ from those generated by the traditional models. Moreover, by identifying the critical set of the network, the set of nodes common to all MDSets can be time-consuming. Herein, the authors adopted the minimisation of metabolic adjustment (MOMA) algorithm to develop a new framework, called maximisation of interaction adjustment (MOIA). In MOIA, they provide three models; the first one generates two MDSets with a minimum number of shared proteins, the second model generates constrained multiple MDSets (-MDSets), and the third model generates user-defined MDSets, containing the maximum number of essential genes and/or other important genes of the PPI network. In practice, these models significantly reduce the cost of finding the critical set and classifying the graph nodes. Herein, the authors termed the critical set as the -critical set, where is the number of MDSets generated by the proposed model. Then, they defined a new set of proteins called the -critical set, where each node belongs to MDSets. This set has been shown to be as important as the -critical set and contains many essential genes, transcription factors, and protein kinases as the -critical set. The -critical set can be used to extend the search for drug target proteins. Based on the performance of the MOIA models, the authors believe the proposed methods contribute to answering key questions about the MDSets of PPI networks, and their results and analysis can be extended to other network types.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.