{"title":"来自火星的消息:双层悖论,细胞内PCR,嵌合结移位,暗物质mRNA和哺乳动物rna依赖的mRNA扩增的其他显着特征。对阿尔茨海默病、rna疫苗和mRNA疗法的启示","authors":"Vladimir Volloch, Sophia Rits-Volloch","doi":"10.33597/aimm.02-1009","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular Biology, a branch of science established to examine the flow of information from \"letters\" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a \"chimeric\" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is \"silent\" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial \"Dark Matter\" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.</p>","PeriodicalId":92750,"journal":{"name":"Annals of integrative molecular medicine","volume":"2 ","pages":"131-173"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088752/pdf/nihms-1678981.pdf","citationCount":"3","resultStr":"{\"title\":\"News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics.\",\"authors\":\"Vladimir Volloch, Sophia Rits-Volloch\",\"doi\":\"10.33597/aimm.02-1009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Molecular Biology, a branch of science established to examine the flow of information from \\\"letters\\\" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a \\\"chimeric\\\" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is \\\"silent\\\" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial \\\"Dark Matter\\\" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.</p>\",\"PeriodicalId\":92750,\"journal\":{\"name\":\"Annals of integrative molecular medicine\",\"volume\":\"2 \",\"pages\":\"131-173\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8088752/pdf/nihms-1678981.pdf\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of integrative molecular medicine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33597/aimm.02-1009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of integrative molecular medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33597/aimm.02-1009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
News from Mars: Two-Tier Paradox, Intracellular PCR, Chimeric Junction Shift, Dark Matter mRNA and Other Remarkable Features of Mammalian RNA-Dependent mRNA Amplification. Implications for Alzheimer's Disease, RNA-Based Vaccines and mRNA Therapeutics.
Molecular Biology, a branch of science established to examine the flow of information from "letters" encrypted into DNA structure to functional proteins, was initially defined by a concept of DNA-to-RNA-to-Protein information movement, a notion termed the Central Dogma of Molecular Biology. RNA-dependent mRNA amplification, a novel mode of eukaryotic protein-encoding RNA-to-RNA-to-Protein genomic information transfer, constitutes the extension of the Central Dogma in the context of mammalian cells. It was shown to occur in cellular circumstances requiring exceptionally high levels of production of specific polypeptides, e.g. globin chains during erythroid differentiation or defined secreted proteins in the context of extracellular matrix deposition. Its potency is reflected in the observed cellular levels of the resulting amplified mRNA product: At the peak of the erythroid differentiation, for example, the amount of globin mRNA produced in the amplification pathway is about 1500-fold higher than the amount of its conventionally generated counterpart in the same cells. The cellular enzymatic machinery at the core of this process, RNA-dependent RNA polymerase activity (RdRp), albeit in a non-conventional form, was shown to be constitutively and ubiquitously present, and RNA-dependent RNA synthesis (RdRs) appeared to regularly occur, in mammalian cells. Under most circumstances, the mammalian RdRp activity produces only short antisense RNA transcripts. Generation of complete antisense RNA transcripts and amplification of mRNA molecules require the activation of inducible components of the mammalian RdRp complex. The mechanism of such activation is not clear. The present article suggests that it is triggered by a variety of cellular stresses and occurs in the context of stress responses in general and within the framework of the integrated stress response (ISR) in particular. In this process, various cellular stresses activate, in a stress type-specific manner, defined members of the mammalian translation initiation factor 2α, eIF2α, kinase family: PKR, GCN2, PERK and HRI. Any of these kinases, in an activated form, phosphorylates eIF2α. This results in suppression of global cellular protein synthesis but also in activation of expression of select group of transcription factors including ATF4, ATF5 and CHOP. These transcription factors either function as inducible components of the RdRp complex or enable their expression. The assembly of the competent RdRp complex activates mammalian RNA-dependent mRNA amplification, which appears to be a two-tier process. Tier One is a "chimeric" pathway, named so because it results in an amplified chimeric mRNA molecule containing a fragment of the antisense RNA strand at its 5' terminus. Tier Two further amplifies one of the two RNA end products of the chimeric pathway and constitutes the physiologically occurring intracellular polymerase chain reaction, iPCR. Depending on the structure of the initial mRNA amplification progenitor, the chimeric pathway, Tier One, may result in multiple outcomes including chimeric mRNA that produces either a polypeptide identical to the original, conventional mRNA progenitor-encoded protein or only its C-terminal fragment, CTF. The chimeric RNA end product of Tier One may also produce a polypeptide that is non-contiguously encoded in the genome, activate translation from an open reading frame, which is "silent" in a conventionally transcribed mRNA, or initiate an abortive translation. In sharp contrast, regardless of the outcome of Tier One, the mRNA end product of Tier Two of mammalian mRNA amplification, the iPCR pathway, always produces a polypeptide identical to a conventional mRNA progenitor-encoded protein. This discordance is referred to as the Two-Tier Paradox and discussed in detail in the present article. On the other hand, both Tiers are similar in that they result in heavily modified mRNA molecules resistant to reverse transcription, undetectable by reverse transcription-based methods of sequencing and therefore constituting a proverbial "Dark Matter" mRNA, despite being highly ubiquitous. It appears that in addition to their other functions, the modifications of the amplified mRNA render it compatible, unlike the bulk of cellular mRNA, with phosphorylated eIF2α in translation, implying that in addition to being extraordinarily abundant due to the method of its generation, amplified mRNA is also preferentially translated under the ISR conditions, thus augmenting the efficiency of the amplification process. The vital importance of powerful mechanisms of amplification of protein-encoding genomic information in normal physiology is self-evident. Their malfunctions or misuse appear to be associated with two types of abnormalities, the deficiency of a protein normally produced by these mechanisms and the mRNA amplification-mediated overproduction of a protein normally not generated by such a process. Certain classes of beta-thalassemia exemplify the first type, whereas the second type is represented by overproduction of beta-amyloid in Alzheimer's disease. Moreover, the proposed mechanism of Alzheimer's disease allows a crucial and verifiable prediction, namely that the disease-causing intraneuronally retained variant of beta-amyloid differs from that produced conventionally by βAPP proteolysis in that it contains the additional methionine or acetylated methionine at its N-terminus. Because of its extraordinary evidential value as a natural reporter of the mRNA amplification pathway, this feature, if proven, would, arguably, constitute the proverbial Holy Grail not only for Alzheimer's disease but also for the mammalian RNA-dependent mRNA amplification field in general. Both examples are discussed in detail in the present article, which summarizes and systematizes our current understanding of the field and describes two categories of reporter constructs, one for the chimeric Tier of mRNA amplification, another for the iPCR pathway; both reporter types are essential for elucidating underlying molecular mechanisms. It also suggests, in light of the recently demonstrated feasibility of RNA-based vaccines, that the targeted intracellular amplification of exogenously introduced amplification-eligible antigen-encoding mRNAs via the induced or naturally occurring RNA-dependent mRNA amplification pathway could be of substantial benefit in triggering a fast and potent immune response and instrumental in the development of future vaccines. Similar approaches can also be effective in achieving efficient and sustained expression of exogenous mRNA in mRNA therapeutics.