{"title":"用于下肢三维步态分析的低成本网络摄像头记录系统的可靠性。","authors":"Apiwan Pusara, Sumet Heamawatanachai, Komsak Sinsurin, Chaiyong Jorrakate","doi":"10.1080/23335432.2019.1671221","DOIUrl":null,"url":null,"abstract":"<p><p>The purposes of this study were to develop and evaluate the test-retest reliability of a specific low-cost three-dimensional webcam recording system (3D-WCRS) and compare its reliability to a standard motion analysis system. Twenty healthy volunteers comprised of 5 males and 15 females with a mean age of 22.90 years and mean BMI of 22.72 kg/m<sup>2</sup> were investigated for angles of hip, knee and ankle joints in three planes while walking at a self-selected speed. Intraclass correlation coefficients (ICCs) were used to evaluate as well as compare the test-retest reliability of the 3D-WCRS and standard motion analysis system. Standard error of measurement (SEM) was also analyzed for the purposes of the study. The results exhibited excellent test-retest reliability for the 3D-WCRS (ICCs ranged between 0.93 and 0.99, p = 0.001) in the three joints and planes. The standard motion analysis system demonstrated excellent reliability for all joints and planes (ICCs ranged between 0.99 and 1.00, p = 0.001). Minimal SEM values were observed in both the 3D-WCRS and standard motion analysis systems. Therefore, the developed low-cost 3D-WCRS exhibits good to excellent test-retest reliability. The test-retest reliability of the 3D-WCRS is likely to be comparable to a standard motion analysis system.</p>","PeriodicalId":52124,"journal":{"name":"International Biomechanics","volume":"6 1","pages":"85-92"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23335432.2019.1671221","citationCount":"3","resultStr":"{\"title\":\"Reliability of a low-cost webcam recording system for three-dimensional lower limb gait analysis.\",\"authors\":\"Apiwan Pusara, Sumet Heamawatanachai, Komsak Sinsurin, Chaiyong Jorrakate\",\"doi\":\"10.1080/23335432.2019.1671221\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The purposes of this study were to develop and evaluate the test-retest reliability of a specific low-cost three-dimensional webcam recording system (3D-WCRS) and compare its reliability to a standard motion analysis system. Twenty healthy volunteers comprised of 5 males and 15 females with a mean age of 22.90 years and mean BMI of 22.72 kg/m<sup>2</sup> were investigated for angles of hip, knee and ankle joints in three planes while walking at a self-selected speed. Intraclass correlation coefficients (ICCs) were used to evaluate as well as compare the test-retest reliability of the 3D-WCRS and standard motion analysis system. Standard error of measurement (SEM) was also analyzed for the purposes of the study. The results exhibited excellent test-retest reliability for the 3D-WCRS (ICCs ranged between 0.93 and 0.99, p = 0.001) in the three joints and planes. The standard motion analysis system demonstrated excellent reliability for all joints and planes (ICCs ranged between 0.99 and 1.00, p = 0.001). Minimal SEM values were observed in both the 3D-WCRS and standard motion analysis systems. Therefore, the developed low-cost 3D-WCRS exhibits good to excellent test-retest reliability. The test-retest reliability of the 3D-WCRS is likely to be comparable to a standard motion analysis system.</p>\",\"PeriodicalId\":52124,\"journal\":{\"name\":\"International Biomechanics\",\"volume\":\"6 1\",\"pages\":\"85-92\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23335432.2019.1671221\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Biomechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23335432.2019.1671221\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Biomechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23335432.2019.1671221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Reliability of a low-cost webcam recording system for three-dimensional lower limb gait analysis.
The purposes of this study were to develop and evaluate the test-retest reliability of a specific low-cost three-dimensional webcam recording system (3D-WCRS) and compare its reliability to a standard motion analysis system. Twenty healthy volunteers comprised of 5 males and 15 females with a mean age of 22.90 years and mean BMI of 22.72 kg/m2 were investigated for angles of hip, knee and ankle joints in three planes while walking at a self-selected speed. Intraclass correlation coefficients (ICCs) were used to evaluate as well as compare the test-retest reliability of the 3D-WCRS and standard motion analysis system. Standard error of measurement (SEM) was also analyzed for the purposes of the study. The results exhibited excellent test-retest reliability for the 3D-WCRS (ICCs ranged between 0.93 and 0.99, p = 0.001) in the three joints and planes. The standard motion analysis system demonstrated excellent reliability for all joints and planes (ICCs ranged between 0.99 and 1.00, p = 0.001). Minimal SEM values were observed in both the 3D-WCRS and standard motion analysis systems. Therefore, the developed low-cost 3D-WCRS exhibits good to excellent test-retest reliability. The test-retest reliability of the 3D-WCRS is likely to be comparable to a standard motion analysis system.
期刊介绍:
International Biomechanics is a fully Open Access biomechanics journal that aims to foster innovation, debate and collaboration across the full spectrum of biomechanics. We publish original articles, reviews, and short communications in all areas of biomechanics and welcome papers that explore: Bio-fluid mechanics, Continuum Biomechanics, Biotribology, Cellular Biomechanics, Mechanobiology, Mechano-transduction, Tissue Mechanics, Comparative Biomechanics and Functional Anatomy, Allometry, Animal locomotion in biomechanics, Gait analysis in biomechanics, Musculoskeletal and Orthopaedic Biomechanics, Cardiovascular Biomechanics, Plant Biomechanics, Injury Biomechanics, Impact Biomechanics, Sport and Exercise Biomechanics, Kinesiology, Rehabilitation in biomechanics, Quantitative Ergonomics, Human Factors engineering, Occupational Biomechanics, Developmental Biomechanics.