植入式膀胱压力传感器的自动漂移消除。

Steve Majerus, Margot S Damaser
{"title":"植入式膀胱压力传感器的自动漂移消除。","authors":"Steve Majerus,&nbsp;Margot S Damaser","doi":"10.1109/BioCAS.2015.7348430","DOIUrl":null,"url":null,"abstract":"<p><p>Implanted pressure sensors suffer from long-term offset drift due to atmospheric changes, package moisture absorption, and patient factors such as posture, implant shift, and tissue overgrowth. Traditionally, wide dynamic range instrumentation is used to satisfy the full-scale and sensitivity requirements for a given application. Transmission of extra bits greatly increases the power draw of an implanted medical device, and simple AC-coupling cannot monitor static pressures. We present a mixed-signal offset cancellation loop to maximize the AC dynamic range of instrumentation circuitry. A digital implementation allows for designer control of the cancellation system time constant and was specifically designed for power-gated pressure sensors. Pressure offset is calculated by digital integration and a bipolar IDAC with coarse/fine tuning injects an offset-cancelling current into a standard piezoresistive MEMS pressure sensor. Test results showed a dynamic range increase of 2.9 bits using dynamic offset cancellation, for an effective sensing range of 11 bits using 8-bit instrumentation. The measured step response of the system showed an overall highpass response of 2.3 - 3.8 mHz. This approach is therefore relevant for bio-sensing of pressures in organs with a very slow physiologic response, e.g. the bladder.</p>","PeriodicalId":73279,"journal":{"name":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","volume":"2015 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/BioCAS.2015.7348430","citationCount":"1","resultStr":"{\"title\":\"Automatic Drift Cancellation of Implanted Bladder Pressure Sensor.\",\"authors\":\"Steve Majerus,&nbsp;Margot S Damaser\",\"doi\":\"10.1109/BioCAS.2015.7348430\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Implanted pressure sensors suffer from long-term offset drift due to atmospheric changes, package moisture absorption, and patient factors such as posture, implant shift, and tissue overgrowth. Traditionally, wide dynamic range instrumentation is used to satisfy the full-scale and sensitivity requirements for a given application. Transmission of extra bits greatly increases the power draw of an implanted medical device, and simple AC-coupling cannot monitor static pressures. We present a mixed-signal offset cancellation loop to maximize the AC dynamic range of instrumentation circuitry. A digital implementation allows for designer control of the cancellation system time constant and was specifically designed for power-gated pressure sensors. Pressure offset is calculated by digital integration and a bipolar IDAC with coarse/fine tuning injects an offset-cancelling current into a standard piezoresistive MEMS pressure sensor. Test results showed a dynamic range increase of 2.9 bits using dynamic offset cancellation, for an effective sensing range of 11 bits using 8-bit instrumentation. The measured step response of the system showed an overall highpass response of 2.3 - 3.8 mHz. This approach is therefore relevant for bio-sensing of pressures in organs with a very slow physiologic response, e.g. the bladder.</p>\",\"PeriodicalId\":73279,\"journal\":{\"name\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"volume\":\"2015 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1109/BioCAS.2015.7348430\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2015.7348430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Biomedical Circuits and Systems Conference : healthcare technology : [proceedings]. IEEE Biomedical Circuits and Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2015.7348430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

由于大气变化、包装吸湿以及患者姿势、植入物移位和组织过度生长等因素,植入压力传感器会遭受长期偏移漂移。传统上,宽动态范围仪表用于满足给定应用的满量程和灵敏度要求。传输额外的比特大大增加了植入医疗设备的功耗,而简单的交流耦合无法监测静压。我们提出了一个混合信号偏移抵消回路,以最大限度地提高仪器电路的交流动态范围。数字实现允许设计人员控制取消系统时间常数,并专门为电源门控压力传感器设计。通过数字集成计算压力偏置,带有粗/微调的双极IDAC将偏置抵消电流注入标准压阻式MEMS压力传感器。测试结果表明,使用动态偏移抵消,动态范围增加2.9位,使用8位仪器,有效传感范围为11位。系统的阶跃响应测量结果显示,整个高通响应为2.3 ~ 3.8 mHz。因此,这种方法与生理反应非常缓慢的器官(如膀胱)的压力生物传感有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automatic Drift Cancellation of Implanted Bladder Pressure Sensor.

Automatic Drift Cancellation of Implanted Bladder Pressure Sensor.

Automatic Drift Cancellation of Implanted Bladder Pressure Sensor.

Implanted pressure sensors suffer from long-term offset drift due to atmospheric changes, package moisture absorption, and patient factors such as posture, implant shift, and tissue overgrowth. Traditionally, wide dynamic range instrumentation is used to satisfy the full-scale and sensitivity requirements for a given application. Transmission of extra bits greatly increases the power draw of an implanted medical device, and simple AC-coupling cannot monitor static pressures. We present a mixed-signal offset cancellation loop to maximize the AC dynamic range of instrumentation circuitry. A digital implementation allows for designer control of the cancellation system time constant and was specifically designed for power-gated pressure sensors. Pressure offset is calculated by digital integration and a bipolar IDAC with coarse/fine tuning injects an offset-cancelling current into a standard piezoresistive MEMS pressure sensor. Test results showed a dynamic range increase of 2.9 bits using dynamic offset cancellation, for an effective sensing range of 11 bits using 8-bit instrumentation. The measured step response of the system showed an overall highpass response of 2.3 - 3.8 mHz. This approach is therefore relevant for bio-sensing of pressures in organs with a very slow physiologic response, e.g. the bladder.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信