Marcía N Snyder, Nathan H Schumaker, Jason B Dunham, Matthew L Keefer, Peter Leinenbach, Allen Brookes, John Palmer, Jennifer Wu, Druscilla Keenan, Joseph L Ebersole
{"title":"美国哥伦比亚河冷水保护区对成年奇努克鲑鱼和钢头鳟鱼生殖迁移走廊条件的贡献。","authors":"Marcía N Snyder, Nathan H Schumaker, Jason B Dunham, Matthew L Keefer, Peter Leinenbach, Allen Brookes, John Palmer, Jennifer Wu, Druscilla Keenan, Joseph L Ebersole","doi":"10.1080/24705357.2020.1855086","DOIUrl":null,"url":null,"abstract":"<p><p>Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (<i>Oncorhynchus tshawytscha</i>) and summer-run steelhead trout (<i>O. mykiss</i>) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.</p>","PeriodicalId":93201,"journal":{"name":"Journal of ecohydraulics","volume":"1 ","pages":"1-13"},"PeriodicalIF":4.6000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/24705357.2020.1855086","citationCount":"11","resultStr":"{\"title\":\"Assessing contributions of cold-water refuges to reproductive migration corridor conditions for adult Chinook Salmon and steelhead trout in the Columbia River, USA.\",\"authors\":\"Marcía N Snyder, Nathan H Schumaker, Jason B Dunham, Matthew L Keefer, Peter Leinenbach, Allen Brookes, John Palmer, Jennifer Wu, Druscilla Keenan, Joseph L Ebersole\",\"doi\":\"10.1080/24705357.2020.1855086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (<i>Oncorhynchus tshawytscha</i>) and summer-run steelhead trout (<i>O. mykiss</i>) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.</p>\",\"PeriodicalId\":93201,\"journal\":{\"name\":\"Journal of ecohydraulics\",\"volume\":\"1 \",\"pages\":\"1-13\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/24705357.2020.1855086\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of ecohydraulics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24705357.2020.1855086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of ecohydraulics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24705357.2020.1855086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Assessing contributions of cold-water refuges to reproductive migration corridor conditions for adult Chinook Salmon and steelhead trout in the Columbia River, USA.
Diadromous fish populations face multiple challenges along their migratory routes. These challenges include suboptimal water quality, harvest, and barriers to longitudinal and lateral connectivity. Interactions among factors influencing migration success make it challenging to assess management options for improving migratory fish conditions along riverine migration corridors. We describe a spatially explicit simulation model that integrates complex individual behaviors of fall-run Chinook Salmon (Oncorhynchus tshawytscha) and summer-run steelhead trout (O. mykiss) during migration, responds to variable habitat conditions over a large extent of the Columbia River, and links migration corridor conditions to fish condition outcomes. The model is built around a mechanistic behavioral decision tree that drives individual interactions of fish within their simulated environments. By simulating several thermalscapes with alternative scenarios of thermal refuge availability, we examined how behavioral thermoregulation in cold-water refuges influenced migrating fish conditions. Outcomes of the migration corridor simulation model show that cold-water refuges can provide relief from exposure to high water temperatures, but do not substantially contribute to energy conservation by migrating adults. Simulated cooling of the Columbia River decreased reliance on cold-water refuges and there were slight reductions in migratory energy expenditure. This modeling of simulated thermalscapes provides a framework for assessing the contribution of cold-water refuges to the success of migrating fishes, but any final determination will depend on analyzing fish survival and health for their entire migration, water temperature management goals and species recovery targets.