{"title":"大鼠肺泡与工作场所粉尘特性的比较。","authors":"Xu Zhang, Zheng Zhang, Peng Wang, Shuyu Xiao, Ke Han, Yali Tang, Heliang Liu, Yuping Bai, Yulan Jin, Jinlong Li, Xiaoming Li, Qingan Xia, Fuhai Shen","doi":"10.1080/01902148.2021.1916649","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The purpose of this study was to analyze the α-SiO<sub>2</sub> content, composition, dispersion, morphology, and free radical content of dust between the alveolar and the workplace, to explore the possible changes in the properties (especially the pathogenicity) of dust after it enters the lung.</p><p><strong>Methods: </strong>We collected the dust in the workplace in HANDAN Coal mine. They were selected by a 400 mesh sieve and was made a suspension of 50 mg/ml, which would be used to perfuse into the trachea of rats. When one week, four weeks, eight weeks, fourteen weeks, twenty weeks after perfusing, we harvested dust in rats alveolar through lung lavage for further processing.</p><p><strong>Results: </strong>In the animal test, typical fibrous nodules appeared 20 weeks after dust exposure. No inflammatory reaction was observed in the saline group. The results of animal experiments showed that there was no significant difference in the content of α-SiO<sub>2</sub> between dust in the workplace and the lung lavage (<i>P</i> > 0.05). The content of the Fe element gradually increased with dust exposure time. The 12 elements of Al, Mg, Si, Pb, Mn, Ni, Zn, Cu, Cr, Sb, Cd, and AS were reduced in the experiment group compared with the workplace group. The shape of the dust in the workplace was mostly spherical. The shape of the dust extracted from the lung lavage fluid was mostly blocky and angular, and a few dust edges were sharp, and more than 80% of the particle size was smaller than 5 μm, while less than 1% of the particle size was larger than 10 μm. The amount of hydroxyl radical released by lung lavage dust in phosphate buffer was higher than that of the workplace dust.</p><p><strong>Conclusions: </strong>After the dust entered the alveoli, the content of α-SiO<sub>2</sub> in the dust did not change with dust exposure time, while the content of elements in the dust, the morphology, and dispersion of the dust changed. The ability of dust in alveoli to produce hydroxyl radicals in phosphate buffer was higher than that in the workplace.</p>","PeriodicalId":12206,"journal":{"name":"Experimental Lung Research","volume":"47 5","pages":"239-249"},"PeriodicalIF":1.5000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/01902148.2021.1916649","citationCount":"2","resultStr":"{\"title\":\"Comparison of properties of dust in alveolar of rats and the workplace.\",\"authors\":\"Xu Zhang, Zheng Zhang, Peng Wang, Shuyu Xiao, Ke Han, Yali Tang, Heliang Liu, Yuping Bai, Yulan Jin, Jinlong Li, Xiaoming Li, Qingan Xia, Fuhai Shen\",\"doi\":\"10.1080/01902148.2021.1916649\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objectives: </strong>The purpose of this study was to analyze the α-SiO<sub>2</sub> content, composition, dispersion, morphology, and free radical content of dust between the alveolar and the workplace, to explore the possible changes in the properties (especially the pathogenicity) of dust after it enters the lung.</p><p><strong>Methods: </strong>We collected the dust in the workplace in HANDAN Coal mine. They were selected by a 400 mesh sieve and was made a suspension of 50 mg/ml, which would be used to perfuse into the trachea of rats. When one week, four weeks, eight weeks, fourteen weeks, twenty weeks after perfusing, we harvested dust in rats alveolar through lung lavage for further processing.</p><p><strong>Results: </strong>In the animal test, typical fibrous nodules appeared 20 weeks after dust exposure. No inflammatory reaction was observed in the saline group. The results of animal experiments showed that there was no significant difference in the content of α-SiO<sub>2</sub> between dust in the workplace and the lung lavage (<i>P</i> > 0.05). The content of the Fe element gradually increased with dust exposure time. The 12 elements of Al, Mg, Si, Pb, Mn, Ni, Zn, Cu, Cr, Sb, Cd, and AS were reduced in the experiment group compared with the workplace group. The shape of the dust in the workplace was mostly spherical. The shape of the dust extracted from the lung lavage fluid was mostly blocky and angular, and a few dust edges were sharp, and more than 80% of the particle size was smaller than 5 μm, while less than 1% of the particle size was larger than 10 μm. The amount of hydroxyl radical released by lung lavage dust in phosphate buffer was higher than that of the workplace dust.</p><p><strong>Conclusions: </strong>After the dust entered the alveoli, the content of α-SiO<sub>2</sub> in the dust did not change with dust exposure time, while the content of elements in the dust, the morphology, and dispersion of the dust changed. The ability of dust in alveoli to produce hydroxyl radicals in phosphate buffer was higher than that in the workplace.</p>\",\"PeriodicalId\":12206,\"journal\":{\"name\":\"Experimental Lung Research\",\"volume\":\"47 5\",\"pages\":\"239-249\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/01902148.2021.1916649\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Lung Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1080/01902148.2021.1916649\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/4/26 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RESPIRATORY SYSTEM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Lung Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/01902148.2021.1916649","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/4/26 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
Comparison of properties of dust in alveolar of rats and the workplace.
Objectives: The purpose of this study was to analyze the α-SiO2 content, composition, dispersion, morphology, and free radical content of dust between the alveolar and the workplace, to explore the possible changes in the properties (especially the pathogenicity) of dust after it enters the lung.
Methods: We collected the dust in the workplace in HANDAN Coal mine. They were selected by a 400 mesh sieve and was made a suspension of 50 mg/ml, which would be used to perfuse into the trachea of rats. When one week, four weeks, eight weeks, fourteen weeks, twenty weeks after perfusing, we harvested dust in rats alveolar through lung lavage for further processing.
Results: In the animal test, typical fibrous nodules appeared 20 weeks after dust exposure. No inflammatory reaction was observed in the saline group. The results of animal experiments showed that there was no significant difference in the content of α-SiO2 between dust in the workplace and the lung lavage (P > 0.05). The content of the Fe element gradually increased with dust exposure time. The 12 elements of Al, Mg, Si, Pb, Mn, Ni, Zn, Cu, Cr, Sb, Cd, and AS were reduced in the experiment group compared with the workplace group. The shape of the dust in the workplace was mostly spherical. The shape of the dust extracted from the lung lavage fluid was mostly blocky and angular, and a few dust edges were sharp, and more than 80% of the particle size was smaller than 5 μm, while less than 1% of the particle size was larger than 10 μm. The amount of hydroxyl radical released by lung lavage dust in phosphate buffer was higher than that of the workplace dust.
Conclusions: After the dust entered the alveoli, the content of α-SiO2 in the dust did not change with dust exposure time, while the content of elements in the dust, the morphology, and dispersion of the dust changed. The ability of dust in alveoli to produce hydroxyl radicals in phosphate buffer was higher than that in the workplace.
期刊介绍:
Experimental Lung Research publishes original articles in all fields of respiratory tract anatomy, biology, developmental biology, toxicology, and pathology. Emphasis is placed on investigations concerned with molecular, biochemical, and cellular mechanisms of normal function, pathogenesis, and responses to injury. The journal publishes reports on important methodological advances on new experimental modes. Also published are invited reviews on important and timely research advances, as well as proceedings of specialized symposia.
Authors can choose to publish gold open access in this journal.