Almaz Tesfay, Tareq Saeed, Anwar Zeb, Daniel Tesfay, Anas Khalaf, James Brannan
{"title":"具有跳跃扩散的随机COVID-19流行模型动力学。","authors":"Almaz Tesfay, Tareq Saeed, Anwar Zeb, Daniel Tesfay, Anas Khalaf, James Brannan","doi":"10.1186/s13662-021-03396-8","DOIUrl":null,"url":null,"abstract":"<p><p>For a stochastic COVID-19 model with jump-diffusion, we prove the existence and uniqueness of the global positive solution. We also investigate some conditions for the extinction and persistence of the disease. We calculate the threshold of the stochastic epidemic system which determines the extinction or permanence of the disease at different intensities of the stochastic noises. This threshold is denoted by <i>ξ</i> which depends on white and jump noises. The effects of these noises on the dynamics of the model are studied. The numerical experiments show that the random perturbation introduced in the stochastic model suppresses disease outbreak as compared to its deterministic counterpart. In other words, the impact of the noises on the extinction and persistence is high. When the noise is large or small, our numerical findings show that COVID-19 vanishes from the population if <math><mi>ξ</mi> <mo><</mo> <mn>1</mn></math> ; whereas the epidemic cannot go out of control if <math><mi>ξ</mi> <mo>></mo> <mn>1</mn></math> . From this, we observe that white noise and jump noise have a significant effect on the spread of COVID-19 infection, i.e., we can conclude that the stochastic model is more realistic than the deterministic one. Finally, to illustrate this phenomenon, we put some numerical simulations.</p>","PeriodicalId":53311,"journal":{"name":"Advances in Difference Equations","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s13662-021-03396-8","citationCount":"1","resultStr":"{\"title\":\"Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion.\",\"authors\":\"Almaz Tesfay, Tareq Saeed, Anwar Zeb, Daniel Tesfay, Anas Khalaf, James Brannan\",\"doi\":\"10.1186/s13662-021-03396-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For a stochastic COVID-19 model with jump-diffusion, we prove the existence and uniqueness of the global positive solution. We also investigate some conditions for the extinction and persistence of the disease. We calculate the threshold of the stochastic epidemic system which determines the extinction or permanence of the disease at different intensities of the stochastic noises. This threshold is denoted by <i>ξ</i> which depends on white and jump noises. The effects of these noises on the dynamics of the model are studied. The numerical experiments show that the random perturbation introduced in the stochastic model suppresses disease outbreak as compared to its deterministic counterpart. In other words, the impact of the noises on the extinction and persistence is high. When the noise is large or small, our numerical findings show that COVID-19 vanishes from the population if <math><mi>ξ</mi> <mo><</mo> <mn>1</mn></math> ; whereas the epidemic cannot go out of control if <math><mi>ξ</mi> <mo>></mo> <mn>1</mn></math> . From this, we observe that white noise and jump noise have a significant effect on the spread of COVID-19 infection, i.e., we can conclude that the stochastic model is more realistic than the deterministic one. Finally, to illustrate this phenomenon, we put some numerical simulations.</p>\",\"PeriodicalId\":53311,\"journal\":{\"name\":\"Advances in Difference Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s13662-021-03396-8\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Difference Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13662-021-03396-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/5/1 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Difference Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13662-021-03396-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/5/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Dynamics of a stochastic COVID-19 epidemic model with jump-diffusion.
For a stochastic COVID-19 model with jump-diffusion, we prove the existence and uniqueness of the global positive solution. We also investigate some conditions for the extinction and persistence of the disease. We calculate the threshold of the stochastic epidemic system which determines the extinction or permanence of the disease at different intensities of the stochastic noises. This threshold is denoted by ξ which depends on white and jump noises. The effects of these noises on the dynamics of the model are studied. The numerical experiments show that the random perturbation introduced in the stochastic model suppresses disease outbreak as compared to its deterministic counterpart. In other words, the impact of the noises on the extinction and persistence is high. When the noise is large or small, our numerical findings show that COVID-19 vanishes from the population if ; whereas the epidemic cannot go out of control if . From this, we observe that white noise and jump noise have a significant effect on the spread of COVID-19 infection, i.e., we can conclude that the stochastic model is more realistic than the deterministic one. Finally, to illustrate this phenomenon, we put some numerical simulations.
期刊介绍:
The theory of difference equations, the methods used, and their wide applications have advanced beyond their adolescent stage to occupy a central position in applicable analysis. In fact, in the last 15 years, the proliferation of the subject has been witnessed by hundreds of research articles, several monographs, many international conferences, and numerous special sessions.
The theory of differential and difference equations forms two extreme representations of real world problems. For example, a simple population model when represented as a differential equation shows the good behavior of solutions whereas the corresponding discrete analogue shows the chaotic behavior. The actual behavior of the population is somewhere in between.
The aim of Advances in Difference Equations is to report mainly the new developments in the field of difference equations, and their applications in all fields. We will also consider research articles emphasizing the qualitative behavior of solutions of ordinary, partial, delay, fractional, abstract, stochastic, fuzzy, and set-valued differential equations.
Advances in Difference Equations will accept high-quality articles containing original research results and survey articles of exceptional merit.