Daniel L Smith, Bisrat G Debeb, Parmeswaran Diagaradjane, Richard Larson, Swaminathan Kumar, Jing Ning, Lara Lacerda, Li Li, Wendy A Woodward
{"title":"在转移性her2阳性乳腺癌小鼠模型中,预防性颅脑照射可降低脑转移的发生率。","authors":"Daniel L Smith, Bisrat G Debeb, Parmeswaran Diagaradjane, Richard Larson, Swaminathan Kumar, Jing Ning, Lara Lacerda, Li Li, Wendy A Woodward","doi":"10.18632/genesandcancer.212","DOIUrl":null,"url":null,"abstract":"<p><p>Prophylactic cranial irradiation (PCI) can reduce the incidence of brain metastasis and improve overall survival in some patients with acute lymphoblastic leukemia or small-cell lung cancer. We examined the potential effects of PCI in a mouse model of breast cancer brain metastasis. The HER2+ inflammatory breast cancer cell line MDA-IBC3 was labeled with green fluorescent protein and injected via tail-vein into female SCID/Beige mice. Mice were then given 0 Gy or 4 Gy of whole-brain irradiation 2 days before tumor-cell injection or 5 days, 3 weeks, or 6 weeks after tumor-cell injection. Mice were sacrificed 4-weeks or 8-weeks after injection and brain tissues were examined for metastasis by fluorescent stereomicroscopy. In the unirradiated control group, brain metastases were present in 77% of mice at 4 weeks and in 90% of mice at 8 weeks; by comparison, rates for the group given PCI at 5 days after tumor-cell injection were 20% at 4 weeks (<i>p</i>=0.01) and 30% at 8 weeks (<i>p</i>=0.02). The PCI group also had fewer brain metastases per mouse at 4 weeks (<i>p</i>=0.03) and 8 weeks (<i>p</i>=0.006) versus the unirradiated control as well as a lower metastatic burden (<i>p</i>=0.01). Irradiation given either before tumor-cell injection or 3-6 weeks afterward had no significant effect on brain metastases compared to the unirradiated control. These results underscore the importance of timing for irradiating subclinical disease. Clinical whole brain strategies to target subclinical brain disease as safely as possible may warrant further study.</p>","PeriodicalId":38987,"journal":{"name":"Genes and Cancer","volume":" ","pages":"28-38"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045965/pdf/","citationCount":"0","resultStr":"{\"title\":\"Prophylactic cranial irradiation reduces the incidence of brain metastasis in a mouse model of metastatic, HER2-positive breast cancer.\",\"authors\":\"Daniel L Smith, Bisrat G Debeb, Parmeswaran Diagaradjane, Richard Larson, Swaminathan Kumar, Jing Ning, Lara Lacerda, Li Li, Wendy A Woodward\",\"doi\":\"10.18632/genesandcancer.212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Prophylactic cranial irradiation (PCI) can reduce the incidence of brain metastasis and improve overall survival in some patients with acute lymphoblastic leukemia or small-cell lung cancer. We examined the potential effects of PCI in a mouse model of breast cancer brain metastasis. The HER2+ inflammatory breast cancer cell line MDA-IBC3 was labeled with green fluorescent protein and injected via tail-vein into female SCID/Beige mice. Mice were then given 0 Gy or 4 Gy of whole-brain irradiation 2 days before tumor-cell injection or 5 days, 3 weeks, or 6 weeks after tumor-cell injection. Mice were sacrificed 4-weeks or 8-weeks after injection and brain tissues were examined for metastasis by fluorescent stereomicroscopy. In the unirradiated control group, brain metastases were present in 77% of mice at 4 weeks and in 90% of mice at 8 weeks; by comparison, rates for the group given PCI at 5 days after tumor-cell injection were 20% at 4 weeks (<i>p</i>=0.01) and 30% at 8 weeks (<i>p</i>=0.02). The PCI group also had fewer brain metastases per mouse at 4 weeks (<i>p</i>=0.03) and 8 weeks (<i>p</i>=0.006) versus the unirradiated control as well as a lower metastatic burden (<i>p</i>=0.01). Irradiation given either before tumor-cell injection or 3-6 weeks afterward had no significant effect on brain metastases compared to the unirradiated control. These results underscore the importance of timing for irradiating subclinical disease. Clinical whole brain strategies to target subclinical brain disease as safely as possible may warrant further study.</p>\",\"PeriodicalId\":38987,\"journal\":{\"name\":\"Genes and Cancer\",\"volume\":\" \",\"pages\":\"28-38\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8045965/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genes and Cancer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18632/genesandcancer.212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/genesandcancer.212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Prophylactic cranial irradiation reduces the incidence of brain metastasis in a mouse model of metastatic, HER2-positive breast cancer.
Prophylactic cranial irradiation (PCI) can reduce the incidence of brain metastasis and improve overall survival in some patients with acute lymphoblastic leukemia or small-cell lung cancer. We examined the potential effects of PCI in a mouse model of breast cancer brain metastasis. The HER2+ inflammatory breast cancer cell line MDA-IBC3 was labeled with green fluorescent protein and injected via tail-vein into female SCID/Beige mice. Mice were then given 0 Gy or 4 Gy of whole-brain irradiation 2 days before tumor-cell injection or 5 days, 3 weeks, or 6 weeks after tumor-cell injection. Mice were sacrificed 4-weeks or 8-weeks after injection and brain tissues were examined for metastasis by fluorescent stereomicroscopy. In the unirradiated control group, brain metastases were present in 77% of mice at 4 weeks and in 90% of mice at 8 weeks; by comparison, rates for the group given PCI at 5 days after tumor-cell injection were 20% at 4 weeks (p=0.01) and 30% at 8 weeks (p=0.02). The PCI group also had fewer brain metastases per mouse at 4 weeks (p=0.03) and 8 weeks (p=0.006) versus the unirradiated control as well as a lower metastatic burden (p=0.01). Irradiation given either before tumor-cell injection or 3-6 weeks afterward had no significant effect on brain metastases compared to the unirradiated control. These results underscore the importance of timing for irradiating subclinical disease. Clinical whole brain strategies to target subclinical brain disease as safely as possible may warrant further study.