Chih-Hsien Huang, Junjie Yao, Lihong V Wang, Jun Zou
{"title":"用于超声和光声显微成像应用的水浸式两轴扫描镜微系统。","authors":"Chih-Hsien Huang, Junjie Yao, Lihong V Wang, Jun Zou","doi":"10.1007/s00542-012-1660-4","DOIUrl":null,"url":null,"abstract":"<p><p>Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.</p>","PeriodicalId":49813,"journal":{"name":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","volume":"19 4","pages":"577-582"},"PeriodicalIF":1.6000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s00542-012-1660-4","citationCount":"26","resultStr":"{\"title\":\"A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications.\",\"authors\":\"Chih-Hsien Huang, Junjie Yao, Lihong V Wang, Jun Zou\",\"doi\":\"10.1007/s00542-012-1660-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.</p>\",\"PeriodicalId\":49813,\"journal\":{\"name\":\"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems\",\"volume\":\"19 4\",\"pages\":\"577-582\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s00542-012-1660-4\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00542-012-1660-4\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2012/9/13 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystem Technologies-Micro-And Nanosystems-Information Storage and Processing Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00542-012-1660-4","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2012/9/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
A water-immersible 2-axis scanning mirror microsystem for ultrasound andha photoacoustic microscopic imaging applications.
Fast scanning is highly desired for both ultrasound and photoacoustic microscopic imaging, whereas the liquid environment required for acoustic propagation limits the usage of traditional microelectromechanical systems (MEMS) scanning mirrors. Here, a new water-immersible scanning mirror microsystem has been designed, fabricated and tested. To achieve reliable underwater scanning, flexible polymer torsion hinges fabricated by laser micromachining were used to support the reflective silicon mirror plate. Two efficient electromagnetic microactuators consisting of compact RF choke inductors and high-strength neodymium magnet disc were constructed to drive the silicon mirror plate around a fast axis and a slow axis. The performance of this water-immersible scanning mirror microsystem in both air and water were tested using the laser tracing method. For the fast axis, the resonance frequency reached 224 Hz in air and 164 Hz in water, respectively. The scanning angles in both air and water under ±16 V DC driving were ±12°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±13.6° and ±10°. For the slow axis, the resonance frequency reached 55 Hz in air and 38 Hz in water, respectively. The scanning angles in both air and water under ±10 V DC driving were ±6.5°. The scanning angles in air and water under ±10 V AC driving (at the resonance frequencies) were ±8.5° and ±6°. The feasibility of using such a water-immersible scanning mirror microsystem for scanning ultrasound microscopic imaging has been demonstrated with a 25-MHz ultrasound pulse/echo system and a target consisting of three optical fibers.
期刊介绍:
"Microsystem Technologies - Micro- and Nanosystems. Information Storage and Processing Systems" is intended to provide rapid publication of important and timely results on electromechanical, materials science, design, and manufacturing issues of these systems and their components.
The MEMS/NEMS (Micro/NanoElectroMechanical Systems) area includes sensor, actuators and other micro/nanosystems, and micromechatronic systems integration.
Information storage systems include magnetic recording, optical recording, and other recording devices, e.g., rigid disk, flexible disk, tape and card drives. Processing systems include copiers, printers, scanners and digital cameras.
All contributions are of international archival quality. These are refereed by MST editors and their reviewers by rigorous journal standards. The journal covers a wide range of interdisciplinary technical areas. It brings together and cross-links the knowledge, experience, and capabilities of academic and industrial specialists in many fields. Finally, it contributes to the economically and ecologically sound production of reliable, high-performance MEMS and information storage & processing systems.