简单介绍参数时间到事件模型。

IF 1.1 Q4 PHARMACOLOGY & PHARMACY
Translational and Clinical Pharmacology Pub Date : 2021-03-01 Epub Date: 2021-03-25 DOI:10.12793/tcp.2021.29.e7
Hyeong-Seok Lim
{"title":"简单介绍参数时间到事件模型。","authors":"Hyeong-Seok Lim","doi":"10.12793/tcp.2021.29.e7","DOIUrl":null,"url":null,"abstract":"<p><p>This tutorial explains the basic concept of parametric time to event (TTE) models, focusing on commonly used exponential, Weibull, and log-logistic model. TTE data is commonly used as endpoint for treatment effect of a drug or prognosis of diseases. Although non-parametric Kaplan-Meier analysis has been widely used for TTE data analysis, parametric modeling analysis has its own advantages such as ease of simulation, and evaluation of continuous covariate. Accelerated failure time model is introduced as a covariate model for TTE data together with proportional hazard model. Compared to proportional hazard model, accelerated failure time model provides more intuitive results on covariate effect since it states that covariates change TTE whereas in proportional hazard model covariates affect hazard.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"29 1","pages":"1-5"},"PeriodicalIF":1.1000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/31/tcp-29-1.PMC8020361.pdf","citationCount":"2","resultStr":"{\"title\":\"Brief introduction to parametric time to event model.\",\"authors\":\"Hyeong-Seok Lim\",\"doi\":\"10.12793/tcp.2021.29.e7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This tutorial explains the basic concept of parametric time to event (TTE) models, focusing on commonly used exponential, Weibull, and log-logistic model. TTE data is commonly used as endpoint for treatment effect of a drug or prognosis of diseases. Although non-parametric Kaplan-Meier analysis has been widely used for TTE data analysis, parametric modeling analysis has its own advantages such as ease of simulation, and evaluation of continuous covariate. Accelerated failure time model is introduced as a covariate model for TTE data together with proportional hazard model. Compared to proportional hazard model, accelerated failure time model provides more intuitive results on covariate effect since it states that covariates change TTE whereas in proportional hazard model covariates affect hazard.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"29 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/48/31/tcp-29-1.PMC8020361.pdf\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2021.29.e7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2021/3/25 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2021.29.e7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/25 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 2

摘要

本教程解释参数时间到事件(TTE)模型的基本概念,重点介绍常用的指数模型、威布尔模型和逻辑逻辑模型。TTE数据通常用作药物治疗效果或疾病预后的终点。虽然非参数Kaplan-Meier分析已被广泛应用于TTE数据分析,但参数化建模分析具有易于模拟、评价连续协变量等优点。将加速失效时间模型与比例风险模型一起作为TTE数据的协变量模型。与比例风险模型相比,加速失效时间模型更直观地反映了协变量改变TTE的协变量效应,而比例风险模型中协变量影响风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brief introduction to parametric time to event model.

Brief introduction to parametric time to event model.

Brief introduction to parametric time to event model.

Brief introduction to parametric time to event model.

This tutorial explains the basic concept of parametric time to event (TTE) models, focusing on commonly used exponential, Weibull, and log-logistic model. TTE data is commonly used as endpoint for treatment effect of a drug or prognosis of diseases. Although non-parametric Kaplan-Meier analysis has been widely used for TTE data analysis, parametric modeling analysis has its own advantages such as ease of simulation, and evaluation of continuous covariate. Accelerated failure time model is introduced as a covariate model for TTE data together with proportional hazard model. Compared to proportional hazard model, accelerated failure time model provides more intuitive results on covariate effect since it states that covariates change TTE whereas in proportional hazard model covariates affect hazard.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational and Clinical Pharmacology
Translational and Clinical Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.60
自引率
11.10%
发文量
17
期刊介绍: Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信