光声显微镜中的光纤激光技术。

4区 计算机科学 Q1 Arts and Humanities
Long Jin, Yizhi Liang
{"title":"光声显微镜中的光纤激光技术。","authors":"Long Jin,&nbsp;Yizhi Liang","doi":"10.1186/s42492-021-00076-y","DOIUrl":null,"url":null,"abstract":"<p><p>Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.</p>","PeriodicalId":52384,"journal":{"name":"Visual Computing for Industry, Biomedicine, and Art","volume":"4 1","pages":"11"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s42492-021-00076-y","citationCount":"5","resultStr":"{\"title\":\"Fiber laser technologies for photoacoustic microscopy.\",\"authors\":\"Long Jin,&nbsp;Yizhi Liang\",\"doi\":\"10.1186/s42492-021-00076-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.</p>\",\"PeriodicalId\":52384,\"journal\":{\"name\":\"Visual Computing for Industry, Biomedicine, and Art\",\"volume\":\"4 1\",\"pages\":\"11\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1186/s42492-021-00076-y\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Visual Computing for Industry, Biomedicine, and Art\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.1186/s42492-021-00076-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Visual Computing for Industry, Biomedicine, and Art","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1186/s42492-021-00076-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 5

摘要

由于在精密测量和光学测试、医疗保健和工业应用(包括激光焊接、清洁和制造)中的应用增加,光纤激光技术在过去十年中经历了快速增长。光纤激光器输出的激光脉冲能量高、重复频率高、波长可控、噪声低、光束质量好,适用于光声成像。本文综述了近年来光纤激光光声显微技术的研究进展。通过使用调q光纤激光器、基于受激拉曼散射的激光源或基于光纤的超连续光谱光声激发源,多光谱PAM可用于成像氧饱和或富含脂质的生物组织。PAM还可以通过测量声诱导的激光频移,将单模光纤激光腔作为高灵敏度超声传感器。由于它们的小尺寸和高灵活性,紧凑的头戴式、可穿戴式或手持成像模式和更好的光声内窥镜可以使用基于光纤激光的PAM。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fiber laser technologies for photoacoustic microscopy.

Fiber laser technologies for photoacoustic microscopy.

Fiber laser technologies for photoacoustic microscopy.

Fiber laser technologies for photoacoustic microscopy.

Fiber laser technology has experienced a rapid growth over the past decade owing to increased applications in precision measurement and optical testing, medical care, and industrial applications, including laser welding, cleaning, and manufacturing. A fiber laser can output laser pulses with high energy, a high repetition rate, a controllable wavelength, low noise, and good beam quality, making it applicable in photoacoustic imaging. Herein, recent developments in fiber-laser-based photoacoustic microscopy (PAM) are reviewed. Multispectral PAM can be used to image oxygen saturation or lipid-rich biological tissues by applying a Q-switched fiber laser, a stimulated Raman scattering-based laser source, or a fiber-based supercontinuum source for photoacoustic excitation. PAM can also incorporate a single-mode fiber laser cavity as a high-sensitivity ultrasound sensor by measuring the acoustically induced lasing-frequency shift. Because of their small size and high flexibility, compact head-mounted, wearable, or hand-held imaging modalities and better photoacoustic endoscopes can be enabled using fiber-laser-based PAM.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Visual Computing for Industry, Biomedicine, and Art
Visual Computing for Industry, Biomedicine, and Art Arts and Humanities-Visual Arts and Performing Arts
CiteScore
5.60
自引率
0.00%
发文量
28
审稿时长
5 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信