粘附刺激哺乳动物细胞的Scar/WAVE磷酸化。

Q2 Agricultural and Biological Sciences
Shashi Prakash Singh, Robert H Insall
{"title":"粘附刺激哺乳动物细胞的Scar/WAVE磷酸化。","authors":"Shashi Prakash Singh,&nbsp;Robert H Insall","doi":"10.1080/19420889.2020.1855854","DOIUrl":null,"url":null,"abstract":"<p><p>The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.</p>","PeriodicalId":39647,"journal":{"name":"Communicative and Integrative Biology","volume":"14 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/19420889.2020.1855854","citationCount":"5","resultStr":"{\"title\":\"Adhesion stimulates Scar/WAVE phosphorylation in mammalian cells.\",\"authors\":\"Shashi Prakash Singh,&nbsp;Robert H Insall\",\"doi\":\"10.1080/19420889.2020.1855854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.</p>\",\"PeriodicalId\":39647,\"journal\":{\"name\":\"Communicative and Integrative Biology\",\"volume\":\"14 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/19420889.2020.1855854\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communicative and Integrative Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19420889.2020.1855854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communicative and Integrative Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19420889.2020.1855854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 5

摘要

Scar/WAVE复合物催化假足和板足的突出,因此是细胞迁移的主要调节因子。然而,除了依赖Rac之外,它的活性是如何被调节的尚不清楚。富含脯氨酸的区域被激酶磷酸化,如Erk2,被认为是上游的激活因子。我们最近报道了磷酸化不是复合体激活所必需的。相反,它发生在Scar/WAVE被激活后,并作为调制器。趋化剂信号和Erk2都不影响磷酸化的数量,尽管在盘基骨菌中,磷酸化是由细胞-底物粘附促进的。我们现在报道细胞-底物粘附也促进哺乳动物细胞中的Scar/WAVE2磷酸化,这表明该过程是进化保守的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Adhesion stimulates Scar/WAVE phosphorylation in mammalian cells.

Adhesion stimulates Scar/WAVE phosphorylation in mammalian cells.

The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communicative and Integrative Biology
Communicative and Integrative Biology Agricultural and Biological Sciences-Agricultural and Biological Sciences (all)
CiteScore
3.50
自引率
0.00%
发文量
22
审稿时长
6 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信