人工智能管道,弥合精准医学领域工作台研究人员与临床研究人员之间的差距。

Med One Pub Date : 2020-01-10 DOI:10.20900/mo20200001
Lewis J Frey, Douglas A Talbert
{"title":"人工智能管道,弥合精准医学领域工作台研究人员与临床研究人员之间的差距。","authors":"Lewis J Frey, Douglas A Talbert","doi":"10.20900/mo20200001","DOIUrl":null,"url":null,"abstract":"<p><p>Precision medicine informatics is a field of research that incorporates learning systems that generate new knowledge to improve individualized treatments using integrated data sets and models. Given the ever-increasing volumes of data that are relevant to patient care, artificial intelligence (AI) pipelines need to be a central component of such research to speed discovery. Applying AI methodology to complex multidisciplinary information retrieval can support efforts to discover bridging concepts within collaborating communities. This dovetails with precision medicine research, given the information rich multi-omic data that are used in precision medicine analysis pipelines. In this perspective article we define a prototype AI pipeline to facilitate discovering research connections between bioinformatics and clinical researchers. We propose building knowledge representations that are iteratively improved through AI and human-informed learning feedback loops supported through crowdsourcing. To illustrate this, we will explore the specific use case of nonalcoholic fatty liver disease, a growing health care problem. We will examine AI pipeline construction and utilization in relation to bench-to-bedside bridging concepts with interconnecting knowledge representations applicable to bioinformatics researchers and clinicians.</p>","PeriodicalId":18306,"journal":{"name":"Med One","volume":"5 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/94/nihms-1068756.PMC7839064.pdf","citationCount":"0","resultStr":"{\"title\":\"Artificial Intelligence Pipeline to Bridge the Gap between Bench Researchers and Clinical Researchers in Precision Medicine.\",\"authors\":\"Lewis J Frey, Douglas A Talbert\",\"doi\":\"10.20900/mo20200001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Precision medicine informatics is a field of research that incorporates learning systems that generate new knowledge to improve individualized treatments using integrated data sets and models. Given the ever-increasing volumes of data that are relevant to patient care, artificial intelligence (AI) pipelines need to be a central component of such research to speed discovery. Applying AI methodology to complex multidisciplinary information retrieval can support efforts to discover bridging concepts within collaborating communities. This dovetails with precision medicine research, given the information rich multi-omic data that are used in precision medicine analysis pipelines. In this perspective article we define a prototype AI pipeline to facilitate discovering research connections between bioinformatics and clinical researchers. We propose building knowledge representations that are iteratively improved through AI and human-informed learning feedback loops supported through crowdsourcing. To illustrate this, we will explore the specific use case of nonalcoholic fatty liver disease, a growing health care problem. We will examine AI pipeline construction and utilization in relation to bench-to-bedside bridging concepts with interconnecting knowledge representations applicable to bioinformatics researchers and clinicians.</p>\",\"PeriodicalId\":18306,\"journal\":{\"name\":\"Med One\",\"volume\":\"5 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/8f/94/nihms-1068756.PMC7839064.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Med One\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20900/mo20200001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Med One","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20900/mo20200001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

精准医学信息学是一个研究领域,它将学习系统纳入其中,利用综合数据集和模型生成新知识,从而改进个体化治疗。鉴于与患者护理相关的数据量不断增加,人工智能(AI)管道需要成为此类研究的核心组成部分,以加快发现速度。将人工智能方法应用于复杂的多学科信息检索,可以支持在合作社区内发现桥接概念。这与精准医学研究不谋而合,因为精准医学分析管道中使用了信息丰富的多原子数据。在这篇视角独特的文章中,我们定义了一个人工智能管道原型,以促进发现生物信息学和临床研究人员之间的研究联系。我们建议建立知识表征,并通过众包支持的人工智能和人工智能学习反馈循环进行迭代改进。为了说明这一点,我们将探讨非酒精性脂肪肝这一日益严重的医疗保健问题的具体使用案例。我们将结合适用于生物信息学研究人员和临床医生的具有相互关联的知识表征的 "从工作台到工作台"(bench-to-bedside)桥接概念,研究人工智能流水线的构建和利用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Artificial Intelligence Pipeline to Bridge the Gap between Bench Researchers and Clinical Researchers in Precision Medicine.

Artificial Intelligence Pipeline to Bridge the Gap between Bench Researchers and Clinical Researchers in Precision Medicine.

Artificial Intelligence Pipeline to Bridge the Gap between Bench Researchers and Clinical Researchers in Precision Medicine.

Artificial Intelligence Pipeline to Bridge the Gap between Bench Researchers and Clinical Researchers in Precision Medicine.

Precision medicine informatics is a field of research that incorporates learning systems that generate new knowledge to improve individualized treatments using integrated data sets and models. Given the ever-increasing volumes of data that are relevant to patient care, artificial intelligence (AI) pipelines need to be a central component of such research to speed discovery. Applying AI methodology to complex multidisciplinary information retrieval can support efforts to discover bridging concepts within collaborating communities. This dovetails with precision medicine research, given the information rich multi-omic data that are used in precision medicine analysis pipelines. In this perspective article we define a prototype AI pipeline to facilitate discovering research connections between bioinformatics and clinical researchers. We propose building knowledge representations that are iteratively improved through AI and human-informed learning feedback loops supported through crowdsourcing. To illustrate this, we will explore the specific use case of nonalcoholic fatty liver disease, a growing health care problem. We will examine AI pipeline construction and utilization in relation to bench-to-bedside bridging concepts with interconnecting knowledge representations applicable to bioinformatics researchers and clinicians.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信