生物等效性数据分析。

IF 1.1 Q4 PHARMACOLOGY & PHARMACY
Translational and Clinical Pharmacology Pub Date : 2020-12-01 Epub Date: 2020-12-17 DOI:10.12793/tcp.2020.28.e20
Gowooni Park, Hyungsub Kim, Kyun-Seop Bae
{"title":"生物等效性数据分析。","authors":"Gowooni Park,&nbsp;Hyungsub Kim,&nbsp;Kyun-Seop Bae","doi":"10.12793/tcp.2020.28.e20","DOIUrl":null,"url":null,"abstract":"<p><p>SAS<sup>®</sup> is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS<sup>®</sup> for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS<sup>®</sup>. The main SAS<sup>®</sup> procedures for BE data analysis are PROC GLM and PROC MIXED, and the corresponding R main packages are \"sasLM\" and \"nlme\" respectively. For fixed effects only or balanced data, the SAS<sup>®</sup> PROC GLM and R \"sasLM\" provide good estimates; however, for a mixed-effects model with unbalanced data, the SAS<sup>®</sup> PROC MIXED and R \"nlme\" are better for providing estimates without bias. The SAS<sup>®</sup> and R scripts are provided for convenience.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"28 4","pages":"175-180"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/14/tcp-28-175.PMC7781810.pdf","citationCount":"0","resultStr":"{\"title\":\"Bioequivalence data analysis.\",\"authors\":\"Gowooni Park,&nbsp;Hyungsub Kim,&nbsp;Kyun-Seop Bae\",\"doi\":\"10.12793/tcp.2020.28.e20\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>SAS<sup>®</sup> is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS<sup>®</sup> for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS<sup>®</sup>. The main SAS<sup>®</sup> procedures for BE data analysis are PROC GLM and PROC MIXED, and the corresponding R main packages are \\\"sasLM\\\" and \\\"nlme\\\" respectively. For fixed effects only or balanced data, the SAS<sup>®</sup> PROC GLM and R \\\"sasLM\\\" provide good estimates; however, for a mixed-effects model with unbalanced data, the SAS<sup>®</sup> PROC MIXED and R \\\"nlme\\\" are better for providing estimates without bias. The SAS<sup>®</sup> and R scripts are provided for convenience.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"28 4\",\"pages\":\"175-180\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/50/14/tcp-28-175.PMC7781810.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2020.28.e20\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2020.28.e20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/17 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

SAS®通常用于生物等效性(BE)数据分析。R是一款免费开放的通用数据分析软件,与SAS®相比,用于BE数据分析的频率较低。本教程解释了如何将R用于be数据分析,以生成与SAS®可比较的结果。BE数据分析的主要SAS®程序为PROC GLM和PROC MIXED,对应的R主程序包分别为“sasLM”和“nlme”。对于仅固定效应或平衡数据,SAS®PROC GLM和R“sasLM”提供了良好的估计;然而,对于具有不平衡数据的混合效应模型,SAS®PROC MIXED和R“nlme”在提供无偏倚估计方面更好。为了方便,提供了SAS®和R脚本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Bioequivalence data analysis.

Bioequivalence data analysis.

Bioequivalence data analysis.

Bioequivalence data analysis.

SAS® is commonly used for bioequivalence (BE) data analysis. R is a free and open software for general purpose data analysis, and is less frequently used than SAS® for BE data analysis. This tutorial explains how R can be used for BE data analysis to generate comparable results with SAS®. The main SAS® procedures for BE data analysis are PROC GLM and PROC MIXED, and the corresponding R main packages are "sasLM" and "nlme" respectively. For fixed effects only or balanced data, the SAS® PROC GLM and R "sasLM" provide good estimates; however, for a mixed-effects model with unbalanced data, the SAS® PROC MIXED and R "nlme" are better for providing estimates without bias. The SAS® and R scripts are provided for convenience.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational and Clinical Pharmacology
Translational and Clinical Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.60
自引率
11.10%
发文量
17
期刊介绍: Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信