从临床前数据预测人体药代动力学:分布容积。

IF 1.1 Q4 PHARMACOLOGY & PHARMACY
Translational and Clinical Pharmacology Pub Date : 2020-12-01 Epub Date: 2020-12-15 DOI:10.12793/tcp.2020.28.e19
Dong-Seok Yim, Suein Choi
{"title":"从临床前数据预测人体药代动力学:分布容积。","authors":"Dong-Seok Yim, Suein Choi","doi":"10.12793/tcp.2020.28.e19","DOIUrl":null,"url":null,"abstract":"<p><p>This tutorial introduces background and methods to predict the human volume of distribution (V<sub>d</sub>) of drugs using <i>in vitro</i> and animal pharmacokinetic (PK) parameters. The physiologically based PK (PBPK) method is based on the familiar equation: <i>V<sub>d</sub></i> = <i>V<sub>p</sub></i> + ∑ <i><sub>T</sub></i> (<i>V<sub>T</sub></i> × <i>k<sub>tp</sub></i> ). In this equation, V<sub>p</sub> (plasma volume) and V<sub>T</sub> (tissue volume) are known physiological values, and k<sub>tp</sub> (tissue plasma partition coefficient) is experimentally measured. Here, the k<sub>tp</sub> may be predicted by PBPK models because it is known to be correlated with the physicochemical property of drugs and tissue composition (fraction of lipid and water). Thus, PBPK models' evolution to predict human V<sub>d</sub> has been the efforts to find a better function giving a more accurate k<sub>tp</sub>. When animal PK parameters estimated using i.v. PK data in ≥ 3 species are available, allometric methods can also be used to predict human V<sub>d</sub>. Unlike the PBPK method, many different models may be compared to find the best-fitting one in the allometry, a kind of empirical approach. Also, compartmental V<sub>d</sub> parameters (e.g., V<sub>c</sub>, V<sub>p</sub>, and Q) can be predicted in the allometry. Although PBPK and allometric methods have long been used to predict V<sub>d</sub>, there is no consensus on method choice. When the discrepancy between PBPK-predicted V<sub>d</sub> and allometry-predicted V<sub>d</sub> is huge, physiological plausibility of all input and output data (e.g., r<sup>2</sup>-value of the allometric curve) may be reviewed for careful decision making.</p>","PeriodicalId":23288,"journal":{"name":"Translational and Clinical Pharmacology","volume":"28 4","pages":"169-174"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/9d/tcp-28-169.PMC7781809.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting human pharmacokinetics from preclinical data: volume of distribution.\",\"authors\":\"Dong-Seok Yim, Suein Choi\",\"doi\":\"10.12793/tcp.2020.28.e19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This tutorial introduces background and methods to predict the human volume of distribution (V<sub>d</sub>) of drugs using <i>in vitro</i> and animal pharmacokinetic (PK) parameters. The physiologically based PK (PBPK) method is based on the familiar equation: <i>V<sub>d</sub></i> = <i>V<sub>p</sub></i> + ∑ <i><sub>T</sub></i> (<i>V<sub>T</sub></i> × <i>k<sub>tp</sub></i> ). In this equation, V<sub>p</sub> (plasma volume) and V<sub>T</sub> (tissue volume) are known physiological values, and k<sub>tp</sub> (tissue plasma partition coefficient) is experimentally measured. Here, the k<sub>tp</sub> may be predicted by PBPK models because it is known to be correlated with the physicochemical property of drugs and tissue composition (fraction of lipid and water). Thus, PBPK models' evolution to predict human V<sub>d</sub> has been the efforts to find a better function giving a more accurate k<sub>tp</sub>. When animal PK parameters estimated using i.v. PK data in ≥ 3 species are available, allometric methods can also be used to predict human V<sub>d</sub>. Unlike the PBPK method, many different models may be compared to find the best-fitting one in the allometry, a kind of empirical approach. Also, compartmental V<sub>d</sub> parameters (e.g., V<sub>c</sub>, V<sub>p</sub>, and Q) can be predicted in the allometry. Although PBPK and allometric methods have long been used to predict V<sub>d</sub>, there is no consensus on method choice. When the discrepancy between PBPK-predicted V<sub>d</sub> and allometry-predicted V<sub>d</sub> is huge, physiological plausibility of all input and output data (e.g., r<sup>2</sup>-value of the allometric curve) may be reviewed for careful decision making.</p>\",\"PeriodicalId\":23288,\"journal\":{\"name\":\"Translational and Clinical Pharmacology\",\"volume\":\"28 4\",\"pages\":\"169-174\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ftp.ncbi.nlm.nih.gov/pub/pmc/oa_pdf/a8/9d/tcp-28-169.PMC7781809.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Translational and Clinical Pharmacology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12793/tcp.2020.28.e19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2020/12/15 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q4\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational and Clinical Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12793/tcp.2020.28.e19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2020/12/15 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

摘要

本教程介绍利用体外和动物药代动力学(PK)参数预测药物人体分布容积(Vd)的背景和方法。基于生理学的 PK (PBPK) 方法基于我们熟悉的方程式:Vd = Vp + ∑ T (VT × ktp ) 。在该方程中,Vp(血浆容积)和 VT(组织容积)是已知的生理值,而 ktp(组织血浆分配系数)是通过实验测得的。在这里,ktp 可由 PBPK 模型预测,因为已知它与药物的理化性质和组织成分(脂质和水的比例)相关。因此,PBPK 模型在预测人体 Vd 方面的发展一直在努力寻找一个更好的函数来给出更准确的 ktp。如果能获得利用≥ 3 个物种的静脉注射 PK 数据估算出的动物 PK 参数,异速法也可用于预测人体 Vd。与 PBPK 方法不同的是,在异速法中可以对许多不同的模型进行比较,以找到最拟合的模型,这是一种经验方法。此外,在异构法中还可以预测分室 Vd 参数(如 Vc、Vp 和 Q)。尽管 PBPK 和异构法长期以来一直被用于预测 Vd,但在方法选择上并没有达成共识。当 PBPK 预测的 Vd 与异构法预测的 Vd 存在巨大差异时,可对所有输入和输出数据(如异构曲线的 r2 值)的生理学合理性进行审查,以便谨慎决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Predicting human pharmacokinetics from preclinical data: volume of distribution.

Predicting human pharmacokinetics from preclinical data: volume of distribution.

Predicting human pharmacokinetics from preclinical data: volume of distribution.

Predicting human pharmacokinetics from preclinical data: volume of distribution.

This tutorial introduces background and methods to predict the human volume of distribution (Vd) of drugs using in vitro and animal pharmacokinetic (PK) parameters. The physiologically based PK (PBPK) method is based on the familiar equation: Vd = Vp + ∑ T (VT × ktp ). In this equation, Vp (plasma volume) and VT (tissue volume) are known physiological values, and ktp (tissue plasma partition coefficient) is experimentally measured. Here, the ktp may be predicted by PBPK models because it is known to be correlated with the physicochemical property of drugs and tissue composition (fraction of lipid and water). Thus, PBPK models' evolution to predict human Vd has been the efforts to find a better function giving a more accurate ktp. When animal PK parameters estimated using i.v. PK data in ≥ 3 species are available, allometric methods can also be used to predict human Vd. Unlike the PBPK method, many different models may be compared to find the best-fitting one in the allometry, a kind of empirical approach. Also, compartmental Vd parameters (e.g., Vc, Vp, and Q) can be predicted in the allometry. Although PBPK and allometric methods have long been used to predict Vd, there is no consensus on method choice. When the discrepancy between PBPK-predicted Vd and allometry-predicted Vd is huge, physiological plausibility of all input and output data (e.g., r2-value of the allometric curve) may be reviewed for careful decision making.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Translational and Clinical Pharmacology
Translational and Clinical Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.60
自引率
11.10%
发文量
17
期刊介绍: Translational and Clinical Pharmacology (Transl Clin Pharmacol, TCP) is the official journal of the Korean Society for Clinical Pharmacology and Therapeutics (KSCPT). TCP is an interdisciplinary journal devoted to the dissemination of knowledge relating to all aspects of translational and clinical pharmacology. The categories for publication include pharmacokinetics (PK) and drug disposition, drug metabolism, pharmacodynamics (PD), clinical trials and design issues, pharmacogenomics and pharmacogenetics, pharmacometrics, pharmacoepidemiology, pharmacovigilence, and human pharmacology. Studies involving animal models, pharmacological characterization, and clinical trials are appropriate for consideration.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信