{"title":"以 CaVα-β 相互作用为目标的喹唑啉和苯甲酰吡唑啉化学类型作为 N 型 CaV2.2 通道拮抗剂的比较。","authors":"Dongzhi Ran, Kimberly Gomez, Aubin Moutal, Marcel Patek, Samantha Perez-Miller, Rajesh Khanna","doi":"10.1080/19336950.2020.1863595","DOIUrl":null,"url":null,"abstract":"<p><p>Structural studies with an α subunit fragment of voltage-gated calcium (CaV) channels in complex with the CaVβ subunits revealed a high homology between the various CaVα-β subunits, predicting that targeting of this interface would result in nonselective compounds. Despite this likelihood, my laboratory initiated a rational structure-based screening campaign focusing on \"hot spots\" on the alpha interacting domain (AID) of the CaVβ2a subunits and identified the small molecule 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide ( <b><i>IPPQ</i></b> ) which selectively targeted the interface between the N-type calcium (CaV2.2) channel and CaVβ. <b><i>IPPQ</i></b> (i) specifically bound to CaVβ2a; (ii) inhibited CaVβ2 's interaction with CaV.2-AID; (iii) inhibited CaV2.2 currents in sensory neurons; (iv) inhibited pre-synaptic localization of CaV2.2 <i>in vivo</i>; and (v) inhibited spinal neurotransmission, which resulted in decreased neurotransmitter release. <b><i>IPPQ</i></b> was anti-nociceptive in naïve rats and reversed mechanical allodynia and thermal hyperalgesia in rodent models of acute, neuropathic, and genetic pain. In structure-activity relationship (SAR) studies focused on improving binding affinity of <b><i>IPPQ</i></b> , another compound (BTT-369), a benzoyl-3,4-dihydro-1'H,2 H-3,4'-bipyrazole class of compounds, was reported by Chen and colleagues, based on work conducted in my laboratory beginning in 2008. BTT-369 contains tetraaryldihydrobipyrazole scaffold - a chemotype featuring phenyl groups known to be significantly metabolized, lower the systemic half-life, and increase the potential for toxicity. Furthermore, the benzoylpyrazoline skeleton in BTT-369 is patented across multiple therapeutic indications. Prior to embarking on an extensive optimization campaign of <b><i>IPPQ</i></b> , we performed a head-to-head comparison of the two compounds. We conclude that <b><i>IPPQ</i></b> is superior to BTT-369 for on-target efficacy, setting the stage for SAR studies to improve on <b><i>IPPQ</i></b> for the development of novel pain therapeutics.</p>","PeriodicalId":72555,"journal":{"name":"Channels (Austin, Tex.)","volume":" ","pages":"128-135"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808423/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comparison of quinazoline and benzoylpyrazoline chemotypes targeting the CaVα-β interaction as antagonists of the N-type CaV2.2 channel.\",\"authors\":\"Dongzhi Ran, Kimberly Gomez, Aubin Moutal, Marcel Patek, Samantha Perez-Miller, Rajesh Khanna\",\"doi\":\"10.1080/19336950.2020.1863595\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Structural studies with an α subunit fragment of voltage-gated calcium (CaV) channels in complex with the CaVβ subunits revealed a high homology between the various CaVα-β subunits, predicting that targeting of this interface would result in nonselective compounds. Despite this likelihood, my laboratory initiated a rational structure-based screening campaign focusing on \\\"hot spots\\\" on the alpha interacting domain (AID) of the CaVβ2a subunits and identified the small molecule 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide ( <b><i>IPPQ</i></b> ) which selectively targeted the interface between the N-type calcium (CaV2.2) channel and CaVβ. <b><i>IPPQ</i></b> (i) specifically bound to CaVβ2a; (ii) inhibited CaVβ2 's interaction with CaV.2-AID; (iii) inhibited CaV2.2 currents in sensory neurons; (iv) inhibited pre-synaptic localization of CaV2.2 <i>in vivo</i>; and (v) inhibited spinal neurotransmission, which resulted in decreased neurotransmitter release. <b><i>IPPQ</i></b> was anti-nociceptive in naïve rats and reversed mechanical allodynia and thermal hyperalgesia in rodent models of acute, neuropathic, and genetic pain. In structure-activity relationship (SAR) studies focused on improving binding affinity of <b><i>IPPQ</i></b> , another compound (BTT-369), a benzoyl-3,4-dihydro-1'H,2 H-3,4'-bipyrazole class of compounds, was reported by Chen and colleagues, based on work conducted in my laboratory beginning in 2008. BTT-369 contains tetraaryldihydrobipyrazole scaffold - a chemotype featuring phenyl groups known to be significantly metabolized, lower the systemic half-life, and increase the potential for toxicity. Furthermore, the benzoylpyrazoline skeleton in BTT-369 is patented across multiple therapeutic indications. Prior to embarking on an extensive optimization campaign of <b><i>IPPQ</i></b> , we performed a head-to-head comparison of the two compounds. We conclude that <b><i>IPPQ</i></b> is superior to BTT-369 for on-target efficacy, setting the stage for SAR studies to improve on <b><i>IPPQ</i></b> for the development of novel pain therapeutics.</p>\",\"PeriodicalId\":72555,\"journal\":{\"name\":\"Channels (Austin, Tex.)\",\"volume\":\" \",\"pages\":\"128-135\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808423/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Channels (Austin, Tex.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/19336950.2020.1863595\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Channels (Austin, Tex.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/19336950.2020.1863595","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of quinazoline and benzoylpyrazoline chemotypes targeting the CaVα-β interaction as antagonists of the N-type CaV2.2 channel.
Structural studies with an α subunit fragment of voltage-gated calcium (CaV) channels in complex with the CaVβ subunits revealed a high homology between the various CaVα-β subunits, predicting that targeting of this interface would result in nonselective compounds. Despite this likelihood, my laboratory initiated a rational structure-based screening campaign focusing on "hot spots" on the alpha interacting domain (AID) of the CaVβ2a subunits and identified the small molecule 2-(3,5-dimethylisoxazol-4-yl)-N-((4-((3-phenylpropyl)amino)quinazolin-2-yl)methyl)acetamide ( IPPQ ) which selectively targeted the interface between the N-type calcium (CaV2.2) channel and CaVβ. IPPQ (i) specifically bound to CaVβ2a; (ii) inhibited CaVβ2 's interaction with CaV.2-AID; (iii) inhibited CaV2.2 currents in sensory neurons; (iv) inhibited pre-synaptic localization of CaV2.2 in vivo; and (v) inhibited spinal neurotransmission, which resulted in decreased neurotransmitter release. IPPQ was anti-nociceptive in naïve rats and reversed mechanical allodynia and thermal hyperalgesia in rodent models of acute, neuropathic, and genetic pain. In structure-activity relationship (SAR) studies focused on improving binding affinity of IPPQ , another compound (BTT-369), a benzoyl-3,4-dihydro-1'H,2 H-3,4'-bipyrazole class of compounds, was reported by Chen and colleagues, based on work conducted in my laboratory beginning in 2008. BTT-369 contains tetraaryldihydrobipyrazole scaffold - a chemotype featuring phenyl groups known to be significantly metabolized, lower the systemic half-life, and increase the potential for toxicity. Furthermore, the benzoylpyrazoline skeleton in BTT-369 is patented across multiple therapeutic indications. Prior to embarking on an extensive optimization campaign of IPPQ , we performed a head-to-head comparison of the two compounds. We conclude that IPPQ is superior to BTT-369 for on-target efficacy, setting the stage for SAR studies to improve on IPPQ for the development of novel pain therapeutics.