{"title":"基于DFCSS的最优特征选择和改进Elman-SFO分类的心脏病预测","authors":"Jaishri Wankhede, Magesh Kumar, Palaniappan Sambandam","doi":"10.1049/iet-syb.2020.0041","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Prediction of cardiovascular disease (CVD) is a critical challenge in the area of clinical data analysis. In this study, an efficient heart disease prediction is developed based on optimal feature selection. Initially, the data pre-processing process is performed using data cleaning, data transformation, missing values imputation, and data normalisation. Then the decision function-based chaotic salp swarm (DFCSS) algorithm is used to select the optimal features in the feature selection process. Then the chosen attributes are given to the improved Elman neural network (IENN) for data classification. Here, the sailfish optimisation (SFO) algorithm is used to compute the optimal weight value of IENN. The combination of DFCSS–IENN-based SFO (IESFO) algorithm effectively predicts heart disease. The proposed (DFCSS–IESFO) approach is implemented in the Python environment using two different datasets such as the University of California Irvine (UCI) Cleveland heart disease dataset and CVD dataset. The simulation results proved that the proposed scheme achieved a high-classification accuracy of 98.7% for the CVD dataset and 98% for the UCI dataset compared to other classifiers, such as support vector machine, K-nearest neighbour, Elman neural network, Gaussian Naive Bayes, logistic regression, random forest, and decision tree.</p>\n </div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687167/pdf/SYB2-14-380.pdf","citationCount":"11","resultStr":"{\"title\":\"Efficient heart disease prediction-based on optimal feature selection using DFCSS and classification by improved Elman-SFO\",\"authors\":\"Jaishri Wankhede, Magesh Kumar, Palaniappan Sambandam\",\"doi\":\"10.1049/iet-syb.2020.0041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Prediction of cardiovascular disease (CVD) is a critical challenge in the area of clinical data analysis. In this study, an efficient heart disease prediction is developed based on optimal feature selection. Initially, the data pre-processing process is performed using data cleaning, data transformation, missing values imputation, and data normalisation. Then the decision function-based chaotic salp swarm (DFCSS) algorithm is used to select the optimal features in the feature selection process. Then the chosen attributes are given to the improved Elman neural network (IENN) for data classification. Here, the sailfish optimisation (SFO) algorithm is used to compute the optimal weight value of IENN. The combination of DFCSS–IENN-based SFO (IESFO) algorithm effectively predicts heart disease. The proposed (DFCSS–IESFO) approach is implemented in the Python environment using two different datasets such as the University of California Irvine (UCI) Cleveland heart disease dataset and CVD dataset. The simulation results proved that the proposed scheme achieved a high-classification accuracy of 98.7% for the CVD dataset and 98% for the UCI dataset compared to other classifiers, such as support vector machine, K-nearest neighbour, Elman neural network, Gaussian Naive Bayes, logistic regression, random forest, and decision tree.</p>\\n </div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8687167/pdf/SYB2-14-380.pdf\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/iet-syb.2020.0041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Efficient heart disease prediction-based on optimal feature selection using DFCSS and classification by improved Elman-SFO
Prediction of cardiovascular disease (CVD) is a critical challenge in the area of clinical data analysis. In this study, an efficient heart disease prediction is developed based on optimal feature selection. Initially, the data pre-processing process is performed using data cleaning, data transformation, missing values imputation, and data normalisation. Then the decision function-based chaotic salp swarm (DFCSS) algorithm is used to select the optimal features in the feature selection process. Then the chosen attributes are given to the improved Elman neural network (IENN) for data classification. Here, the sailfish optimisation (SFO) algorithm is used to compute the optimal weight value of IENN. The combination of DFCSS–IENN-based SFO (IESFO) algorithm effectively predicts heart disease. The proposed (DFCSS–IESFO) approach is implemented in the Python environment using two different datasets such as the University of California Irvine (UCI) Cleveland heart disease dataset and CVD dataset. The simulation results proved that the proposed scheme achieved a high-classification accuracy of 98.7% for the CVD dataset and 98% for the UCI dataset compared to other classifiers, such as support vector machine, K-nearest neighbour, Elman neural network, Gaussian Naive Bayes, logistic regression, random forest, and decision tree.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.