主动机器学习在药物发现中的实际考虑

Q1 Pharmacology, Toxicology and Pharmaceutics
Daniel Reker
{"title":"主动机器学习在药物发现中的实际考虑","authors":"Daniel Reker","doi":"10.1016/j.ddtec.2020.06.001","DOIUrl":null,"url":null,"abstract":"<div><p><span>Active machine learning enables the automated selection of the most valuable next experiments to improve predictive modelling and hasten active retrieval in </span>drug discovery. Although a long established theoretical concept and introduced to drug discovery approximately 15 years ago, the deployment of active learning technology in the discovery pipelines across academia and industry remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved flexibility of laboratory automation, active learning is expected to surge and become a key technology for molecular optimizations. This review recapitulates key findings from previous active learning studies to highlight the challenges and opportunities of applying adaptive machine learning to drug discovery. Specifically, considerations regarding implementation, infrastructural integration, and expected benefits are discussed. By focusing on these practical aspects of active learning, this review aims at providing insights for scientists planning to implement active learning workflows in their discovery pipelines.</p></div>","PeriodicalId":36012,"journal":{"name":"Drug Discovery Today: Technologies","volume":"32 ","pages":"Pages 73-79"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.06.001","citationCount":"39","resultStr":"{\"title\":\"Practical considerations for active machine learning in drug discovery\",\"authors\":\"Daniel Reker\",\"doi\":\"10.1016/j.ddtec.2020.06.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><span>Active machine learning enables the automated selection of the most valuable next experiments to improve predictive modelling and hasten active retrieval in </span>drug discovery. Although a long established theoretical concept and introduced to drug discovery approximately 15 years ago, the deployment of active learning technology in the discovery pipelines across academia and industry remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved flexibility of laboratory automation, active learning is expected to surge and become a key technology for molecular optimizations. This review recapitulates key findings from previous active learning studies to highlight the challenges and opportunities of applying adaptive machine learning to drug discovery. Specifically, considerations regarding implementation, infrastructural integration, and expected benefits are discussed. By focusing on these practical aspects of active learning, this review aims at providing insights for scientists planning to implement active learning workflows in their discovery pipelines.</p></div>\",\"PeriodicalId\":36012,\"journal\":{\"name\":\"Drug Discovery Today: Technologies\",\"volume\":\"32 \",\"pages\":\"Pages 73-79\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.ddtec.2020.06.001\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Discovery Today: Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1740674920300019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today: Technologies","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1740674920300019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 39

摘要

主动机器学习能够自动选择最有价值的下一个实验,以改进预测建模并加速药物发现中的主动检索。虽然早在15年前,主动学习技术就被引入到药物研发中,但在学术界和工业界的研发管道中,主动学习技术的部署仍然缓慢。随着最近人们对人工智能的重新热情以及实验室自动化灵活性的提高,主动学习有望激增,并成为分子优化的关键技术。本文概述了以前主动学习研究的主要发现,以强调将自适应机器学习应用于药物发现的挑战和机遇。具体地说,讨论了有关实现、基础设施集成和预期收益的注意事项。通过关注主动学习的这些实际方面,本综述旨在为计划在其发现管道中实施主动学习工作流程的科学家提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical considerations for active machine learning in drug discovery

Active machine learning enables the automated selection of the most valuable next experiments to improve predictive modelling and hasten active retrieval in drug discovery. Although a long established theoretical concept and introduced to drug discovery approximately 15 years ago, the deployment of active learning technology in the discovery pipelines across academia and industry remains slow. With the recent re-discovered enthusiasm for artificial intelligence as well as improved flexibility of laboratory automation, active learning is expected to surge and become a key technology for molecular optimizations. This review recapitulates key findings from previous active learning studies to highlight the challenges and opportunities of applying adaptive machine learning to drug discovery. Specifically, considerations regarding implementation, infrastructural integration, and expected benefits are discussed. By focusing on these practical aspects of active learning, this review aims at providing insights for scientists planning to implement active learning workflows in their discovery pipelines.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Drug Discovery Today: Technologies
Drug Discovery Today: Technologies Pharmacology, Toxicology and Pharmaceutics-Drug Discovery
自引率
0.00%
发文量
0
期刊介绍: Discovery Today: Technologies compares different technological tools and techniques used from the discovery of new drug targets through to the launch of new medicines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信